• Title/Summary/Keyword: pseudo inverse method

Search Result 89, Processing Time 0.018 seconds

Moving force identification from bending moment responses of bridge

  • Yu, Ling;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.151-170
    • /
    • 2002
  • Moving force identification is a very important inverse problem in structural dynamics. Most of the identification methods are eventually converted to a linear algebraic equation set. Different ways to solve the equation set may lead to solutions with completely different levels of accuracy. Based on the measured bending moment responses of the bridge made in laboratory, this paper presented the time domain method (TDM) and frequency-time domain method (FTDM) for identifying the two moving wheel loads of a vehicle moving across a bridge. Directly calculating pseudo-inverse (PI) matrix and using the singular value decomposition (SVD) technique are adopted as means for solving the over-determined system equation in the TDM and FTDM. The effects of bridge and vehicle parameters on the TDM and FTDM are also investigated. Assessment results show that the SVD technique can effectively improve identification accuracy when using the TDM and FTDM, particularly in the case of the FTDM. This improved accuracy makes the TDM and FTDM more feasible and acceptable as methods for moving force identification.

Time Domain Acoustic Propagation Analysis Using 2-D Pseudo-spectral Modeling for Ocean Environment (해양환경에서 2차원 유사 스펙트럴 모델링을 이용한 시간 영역 음 전달 해석)

  • Kim Keesan;Lee Keunhwa;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.576-582
    • /
    • 2004
  • A computer code that is based on the Pseudo-spectral finite difference algorithm using staggered grid is developed for the wave propagation modeling in the time domain. The advantage of a finite difference approximation is that any geometrically complicated media can be modeled. Staggered grids are advantageous as it provides much more accuracy than using a regular grid. Pseudo-spectral methods are those that evaluate spatial derivatives by multiplying a wavenumber by the Fourier transform of a pressure wave-field and performing the inverse Fourier transform. This method is very stable and reduces memory and the number of computations. The synthetic results by this algorithm agree with the analytic solution in the infinite and half space. The time domain modeling was implemented in various models. such as half-space. Pekeris waveguide, and range dependent environment. The snapshots showing the total wave-field reveals the Propagation characteristic or the acoustic waves through the complex ocean environment.

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

Optimal Path Planning in Redundant Sealing Robots (여유자유도 실링 로봇에서의 최적 경로 계획)

  • Sung, Young Whee;Chu, Baeksuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration (불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템)

  • Song, Joon-Hyuk;Yang, Sung-Mo;Kang, Hee-Yong;Yu, Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

Pose Estimation of a Cylindrical Object Using Genetic Algorithm (유전자 알고리즘을 이용한 원기둥형 물체의 자세 추정 방법)

  • Jeong Kyuwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.54-59
    • /
    • 2005
  • The cylindrical object are widely used as mechanical parts in the manufacturing process. In order to handling those objects using a robot or an automated machine automatically, the pose of the object must be known. The pose can be described by two rotation angles; one angle about the x axis and the other about the y axis. In the many previous researches these angles were obtained by the computationally intensive algorithm, that is, fitting the data as a polynomial and doing pseudo inverse. So that, this method required high performance microprocessor. In this paper in order to avoid complex computation, a new method based on a genetic algorithm is proposed and analyzed through a series of simulations. This algorithm utilized the geometry of the cylindrical shape. The simulation results show that this method find the pose angles very well In most cases, but the computation time is randomly changed because the genetic algorithm is basically one of the random search method.

Compressed B1 Control Method in Multi-channel 3 T MRI (다채널 3T 자기공명장치에서의 Compressed B1 제어법)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1120-1124
    • /
    • 2013
  • Our objective of this study was to reduce radio frequency coil (RF) control time at 3 T MRI systems. A compressed method is proposed with a convex optimization and pseudo-inverse method in multi-channel RF coils. After applying the proposed methods, fields are homogenized with less field data. Even with 80% compression, the fields are well homogenized and localized, indicating that mapping requires only 20% of the original data. Detailed values are compared between each compressed result in and outside the region of interest at 3 T.

An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space

  • Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.45-60
    • /
    • 2019
  • This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.

STRONG CONVERGENCE OF THE MODIFIED HYBRID STEEPEST-DESCENT METHODS FOR GENERAL VARIATIONAL INEQUALITIES

  • Yao, Yonghong;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.179-190
    • /
    • 2007
  • In this paper, we consider the general variational inequality GVI(F, g, C), where F and g are mappings from a Hilbert space into itself and C is the fixed point set of a nonexpansive mapping. We suggest and analyze a new modified hybrid steepest-descent method of type method $u_{n+l}=(1-{\alpha}+{\theta}_{n+1})Tu_n+{\alpha}u_n-{\theta}_{n+1g}(Tu_n)-{\lambda}_{n+1}{\mu}F(Tu_n),\;n{\geq}0$. for solving the general variational inequalities. The sequence $\{x_n}\$ is shown to converge in norm to the solutions of the general variational inequality GVI(F, g, C) under some mild conditions. Application to constrained generalized pseudo-inverse is included. Results proved in the paper can be viewed as an refinement and improvement of previously known results.