• Title/Summary/Keyword: proximity operation

Search Result 78, Processing Time 0.035 seconds

Compliant Ultrasound Proximity Sensor for the Safe Operation of Human Friendly Robots Integrated with Tactile Sensing Capability

  • Cho, Il-Joo;Lee, Hyung-Kew;Chang, Sun-Il;Yoon, Euisik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.310-316
    • /
    • 2017
  • The robot proximity and tactile sensors can be categorized into two groups: grip sensors and safety sensors. They have different performance requirements. The safety sensor should have long proximity range and fast response in order to secure enough response time before colliding with ambient objects. As for the tactile sensing function, the safety sensor need to be fast and compliant to mitigate the impact from a collision. In order to meet these requirements, we proposed and demonstrated a compliant integrated safety sensor suitable to human-friendly robots. An ultrasonic proximity sensor and a piezoelectric tactile sensor made of PVDF films have been integrated in a compliant PDMS structure. The implemented sensor demonstrated the maximum proximity range of 35 cm. The directional tolerance for 30 cm detection range was about ${\pm}15^{\circ}$ from the normal axis. The integrated PVDF tactile sensor was able to detect various impacts of up to 20 N in a controlled experimental setup.

Developing a new index to assess varicella outbreak (수두 유행을 평가하기 위한 신규 지표 개발)

  • Yang, Kiwook;Seo, Incheol
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.2
    • /
    • pp.222-230
    • /
    • 2017
  • Background: Varicella is the most common infectious disease reported despite the high vaccination rate. Interventions that target humans are particularly effective for varicella because humans are its only natural host. On the other hand, the existing national varicella surveillance systems lack the information to identify an outbreak. Therefore, a new index to assess varicella outbreaks was developed. Methods: The residential addresses of 2,718 varicella cases reported in Daegu in 2016 were converted to geographic coordinates and the distances between new varicella case and previous cases within 21 days were calculated from the date analyzed. Two cases were considered to be adjacent if the distance between them was less than 1 km. Finally, a proximity index was introduced by dividing the number of adjacent cases by the number of new cases on the date analyzed. Results: First, time-series charts and scatter plots were used to verify that the proximity index reflected the spatial closeness of the different varicella cases. The proximity index is helpful in identifying outbreaks from a list of single varicella cases. In addition, in this study, a new epidemic characteristic of varicella based on the proximity index was shown. Conclusion: The proximity index introduced in this study can be used to determine the likelihood of an outbreak from a single case of varicella, and it can be embedded in a web-based national varicella surveillance system that is currently in operation.

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

OPERATIONS ON SATURATED FUZZY SYNTOPOGENOUS STRUCTURES

  • Chung, Se-Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.879-889
    • /
    • 1996
  • In order to describe the nearness between fuzzy sets various structures like the fuzzy neighorhood structure ([7])), the Artico-Moresco fuzzy proximity ([2]) and the Lowen fuzzy uniformity ([8]) have been introduced.

  • PDF

Evaluation of a Laser Altimeter using the Pseudo-Random Noise Modulation Technique for Apophis Mission

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Choi, Mansoo;Park, Jong Uk;Choi, Chul-Sung;Bang, Seong-Cheol;Choi, Young-Jun;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.165-173
    • /
    • 2021
  • Apophis is a near-Earth object with a diameter of approximately 340 m, which will come closer to the Earth than a geostationary orbit in 2029, offering a unique opportunity for characterizing the object during the upcoming encounter. Therefore, Korea Astronomy and Space Science Institute has a plan to propose a space mission to explore the Apophis asteroid using scientific instruments such as a laser altimeter. In this study, we evaluate the performance metrics of a laser altimeter using a pseudorandom noise modulation technique for the Apophis mission, in terms of detection probability and ranging accuracy. The closed-form expression of detection probability is provided using the cross correlation between the received pulse trains and pseudo-random binary sequence. And the new ranging accuracy model using Gaussian error propagation is also derived by considering the sampling rate. The operation range is significantly limited by thermal noise rather than background noise, owing to not only the low power laser but also the avalanche photodiode in the analog mode operation. However, it is demonstrated from the numerical simulation that the laser altimeter can achieve the ranging performance required for a proximity operation mode, which employs commercially available components onboard CubeSat-scale satellites for optical communications.

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

A 7.6 mW 2 Gb/s Proximity Transmitter for Smartphone-Mirrored Display Applications

  • Liu, Dang;Liu, Xiaofeng;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2016
  • This paper describes a high data rate proximity transmitter design for high resolution smartphone-mirrored display applications. A 2 Gb/s transmitter is designed with a low transmission power of -70 dBm/MHz and a wide bandwidth of nearly 3 GHz. A digital pre-correction method is employed in the transmitter to mitigate the inter-symbol interference problem. A carrier-based digital pulse shaping and a reconfigurable digital envelope generation methods are employed for robust operation by utilizing 20 phases from a 2 GHz phase-locked loop. A 6.5-9.5 GHz transmitter implemented in 65 nm CMOS achieves the maximum data rate of 2 Gb/s, consuming only 7.6 mW from a 1 V supply.

Design of a BPSK Transceiver for the Direction Finding Proximity Fuze Sensor for Anti-air missiles (방향 탐지용 대공 근접 신관센서의 BPSK 송수신기 설계에 관한 연구)

  • Choi, Jae-Hyun;Lee, Seok-Woo;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.81-88
    • /
    • 2013
  • This paper describes the fundamentals, design, realization and test results of a BPSK(Bi Phase Shift Keying) transceiver for the direction finding proximity fuze sensor for anti-aircrafts or air missiles. The BPSK transceiver for the direction finding fuze sensor has been designed to detect a moving target by Doppler signal processing with the code correlation method and to distinguish direction by comparing received powers of each Doppler signal from adjacent three receiving antennas. The electrical and ESS(Environmental Stress Screening) tests of the BPSK transceiver showed satisfactory results and target detection and direction finding performances proved to be successful through dynamic operation tests by 155 mm gun firing.

A Contact-free type door control System with Proximity Switch (근접센서를 이용한 비접촉 방식의 출입문 감지제어 시스템)

  • Kim sung soo;Lee gi soo;Ahn Cheong Mo;Yoo Ju Hyon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1063-1070
    • /
    • 2005
  • Number of subway train units that Seoul Metropolitan Subway Corporation as at September 2005 is 1.944 on 4 routes from 60 units at the time of commencement of operation, having grown exponentially. Along with increase in the number of passengers the role of subway as safer and expedient means of transportation is now being required. Furthermore, the Corporation has been researching on means of improving the safety and reliability of subway entry/exit doors which has become an essential task and directly effect the safety of the passengers. In this Study, has developed sensory control system for the entry/exit door of the subway train using non-contact proximity sensor as a part of review of and measures against various issues of entry/exit door of the subway trains currently under operation. In addition, this sensor system was verified through test production and tests. If this technology becomes commercialized and practically utilized in the future, it would be able to make definite contribution to the safer transportation of passengers.

  • PDF