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OPERATIONS ON SATURATED FUZZY
SYNTOPOGENOUS STRUCTURES

SE Hwa CHUNG

1. Introduction

In order to describe the nearness between fuzzy sets various struc-
tures like the fuzzy neighborhood structure (:7]), the Artico-Moresco
fuzzy proximity ([2]) and the Lowen fuzzy uniformity ([8]) have been
introduced.

As the syntopogenous structure ([4]) generalizes these structures in
the ordinary sets, the concept of fuzzy syntcpogenous structure has
been introduced by Katsaras to generalize the above mentioned struc-
tures ([5]).

In [3], the author has introduced the concep: of saturated fuzzy syn-
topogenous structures and showed that it also generalizes the above
three structures and that the category [FSyn] of saturated fuzzy syn-
topogenous spaces and continuous maps is coreflective in the category
of [KFSyn] of fuzzy syntopogenous spaces and continuous maps.

Using the various operations on syntopogenous structures, Csaszar
has characterized perfect, biperfect and symmetric syntopogenous stru-
ctures ([4]).

The purpose of this paper is to define the counterparts in saturated
fuzzy syntopogenous structures to those operations and using these, we
investigate relationships between subcategories determined by ordinary
operations in [FSyn].

We will recall basic notations related to fuzzy syntopogenous struc-
tures.

The unit interval will be denoted by I. For a set X and A C X, A
will also denote the fuzzy set in X which is the characteristic map of
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A and z the fuzzy set {r}. For any a € I, the constant map on X into
I with the value a is also denoted by a and the fuzzy sets a A A and
aV X — A in X will be denoted by A, and A® respectively.

For the terminology for fuzzy sets, we refer to [6] and to [1] for the
category theory.

A fuzzy semi-topogenous order on X is a map 7 : IXXIY — I ie.,
a fuzzy relation on fuzzy sets on X which satisfies th= following:

(Ty) r(0,0) = 7(1,1) = 1.

(T2) 7(e, 3) < (1 —a(z))V 3(x) for every 7 € X.

(T3) a; < @ and 8 < 3y imply that 7(a, 8) < 7(a;, 81).

(Ty) (@, )= 7(3, )| < la—]|+][#—]|, where [la]| = sup, ¢ x Ja(e)].
The fuzzy semi-topogenous order 7 is called topogenous if it also satis-
fies

(Ts) (a1 Vag, ) = m(a, 8) At(ag, B)im(a, B1 A By) = (o, 31) A
(o, B2).

For fuzzy semi-topogenous orders ¢ and 1 on a set X, its pointwise
join ¢ V n is again a fuzzy semi-topogenous order on X and the map
7 IXXIX — I defined by 7(a,8) = V{n(a,A) A ((A,3)]A C X}
is again a fuzzy semi-topogenous order on X which will be denoted
by ( on. Moreover, (? will denote (o (. If n < (, then we say
that 7 is coarser than ¢ or { is finer than n. Let 7 be a fuzzy semi-
topogenous order on a set X, then the saturation [7] of 7 1s defined
by [7](a, B) = M7z a(z), ¥* )|,y € X}. Furthermore, 7 is said to
be saturated if T = [r]. It is known [3] that every saturated fuzzy
semi-topogenous order is topogenous.

Let A and B be sets of fuzzy semi-topogenous orders on a set X.
Then we say that A is finer than B or B is coarser than A if for any
7 € B and ¢ > 0 there exists { € A with 7 < ( 4+ ¢. In this case we
write B < A. Furthermore, we say that A and B are equivalent and
write A= B if A<Band B <A.

A fuzzy syntopogenous structure on a set X is a family S of fuzzy
semi-topogenous orders on X satisfying the following:

(FSy) Sis directed in the sense that given (,n € S there exists 7 € S
with (,n < 7.
(FS,) S <§?% where §? denotes {7?|7 € S}.

A fuzzy syntopogenous structure S on a set X is said to be saturated
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if each member of § is saturated and (X, S) is called a saturated fuzzy
syntopogenous space.

For a map f : X — Y and a fuzzy semi-topogenous order 7 on Y,
we define the inverse image of 7 under f by f }(7)(a, 8) = 7(f(a),1-
f(1— 33)), which is again a fuzzy semi-topogenous order on X.

A map f of a fuzzy syntopogenous space ( X,S) into a fuzzy synto-
pogenous space (Y, T) is said to be continuous if f~1(T) < S, where
f7Y(T) denotes {f~!(7)|r € T}.

[FSyn] will denote the category of all saturated fuzzy syntopogenous
spaces and continuous maps between them.

For the details of fuzzy syntopogenous structures, we refer to [3, 5.

2. Elementary operations

In what follows, the set of fuzzy semi-topogenous orders on a set X

will be denoted by O(X)

DEFINITION 2.1. For a set X, a map ¢ O(X) — O(X) (r —
¢ 7 € O(X)) is called an elementary operation if it satisfies the
following:

(Ey) 7 < 7°,

(By) 7 = ¢,

(E3) 7 < n implies 7¢ < n¢,

(B 1] S [,

(Es) 72 < [,

(E¢) Foramap f:Y — X, [f~1(7%)] = [f~(7))¢] for every T €
O(X).

PROPOSITION 2.2. Suppose that ¢ : O(X — O(X) is an elemen-
tary operation, then for any saturated fuzzy semi-topogenous order T
on X, 7° is also saturated.

Proof. 1t is immediate from (E,) and Proposition 3.2 in [3].

Notation. For a set X, we define the following:

1) for 7 € O(X), 7¢: IXXI* — I is the fuzzy semi-topogenous
order defined by 7%(a, 3) = (1 — 3,1 — «).

2) ' 1 O(X)— O(X) is the identity map of O(X).
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(] : O(X) = O(X) is the map given by 7l1 = [r].
4) ? : O(X) — O(X) is the map given by 7P(a, 3) = A{7(7.8)|y <

5) 1 O(X) — O(X) is the map given by 7%(a, 8 = A{r(7,6)]y <
a,3 < é}.

6) * : O(X)— O(X) is the map given by 7°(a, 81 = [t VT7°(«, B).

Using the above notation, we have the following

LEMMA 2.3. The operations *, U1, 2 % and * cn O(X) are ele-
mentary operations.

Proof. Clearly 'is an elementary operation and [l is also an el-
ementary operation by Proposition 3.2 and Proposition 3.13 in [3].
Regarding ?, we first show that for any 7 € O(X),7F € O(X). To see
this, suppose that 7P(a,~) < 7P(«, 3). Then we have

o, 3) - mP(a, )
= (M7, B)la’ < a}) = A{r(d ,y)]d <a})
= V{(A{r(a', 3) ]a' <a})—1(6,y) Ve < al
< v{r(e,3) - 1(8,7)|6 < a}.

Since for each fuzzy set ¢ |7(6,8)—7(6.v)| < ||F=7ll, 7"(a, 8)—1P(a,7)
< I3 = 7). Thus |rP(a,3) — 7P(a. )] < |8 = 7]. Similarly, we
have |7P(a, ) — 7(6,8)| < ||o — ¢]|. The remaining axioms are clear.
Clearly P satisfies (E,),(E;) and (E;). For each 6 < o, [r?](a,3) =
AT Eater s™ )y € X} < Ar(zamy @),y & X) = [7)(6.8).
This proves that [r?] < [7]P. Take any a € I with a < 7%(a,3). For
each v < a, there exists a subset B. of X such that a < 7(vy,B,) A
7(B,,3). Putting

Mr(v, By) AT(By, By < a},
we have a < d. Let B = U{th < 0“}- Since B, C B for each
v < a, T('Y B.,) < 7(v,B); hence d < Ar(~,B) A 7(B.,8)|y < a}.
Since [r?](B, 8) = AM[TP)(B., B)|y < «}.
d < [7")(a, B)/\[T”]BB)
< VAN 1 A)A[P)(AB)AC X
%(a

=Ir
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Thus a < [77]*(a,3); hence by (E4) a < [r]?%(a,3). This proves
that 727 < [rP]2. Finally, let 2,y € X and u,v € I. Then since

flzy) = f(z)y and 1 — y* = y,_, for any map f: X — Y. we have

FH N y”) = 7P (f(2)un f(9)")
= AMT(f(@)w f(9)") 0 < u)
= A {fﬁl("')(fwﬁ y ) w < u}
= (f7 )P (T y"),

so that [f~1(77)] = [(f~!(r))?]. Therefore ? is an elementary opera-
tion.
Using the same argument as above, one can show that ® and *° are

elementary operation. We left the detail to the readers.

DEFINITION 2.4([5]). A fuszy semi-topogenous order 7 on a set X
1s called:

1) perfectif r(V{a;| j € J}. 3) = A{r(a;,B)| j € J}.

2) biperfect if it is perfect and 7(a, A{3;] j = J}) = A{r(a.3,)| j €
J}.

3) symmetric if T = 7°,

It is easy to sce that 7 is biperfect if and only if 7 and 7° are both
perfect.

THEOREM 2.5. Let 7 be a saturated fuzzy topogenous order on X .
Then one has the following:

1) 7P is the coarsest perfect saturated fuzzy topogenous order
finer than 7.

2) 7% is the coarsest biperfect saturated fuzzy topogenous order
finer than 7.

3) 7° Is the coarsest syminetric saturated fuzzy topogenous order
finer than 7.

Proof. 1) It is immediate from (Es) and Proposition 3.2.3 in [3]
that 77 is a saturated topogenous order. Let a = V{a;| j € J}. If
¢ < a, then there exists j € J with ¢ < a;. Thus T”(xa]-.yb) <
T(x.,yb), for P(24j,y") = AM7(zey?)le < aj} < r(z.y®). Hence
AMTP(20;,y0))7 € J} < 7(2¢,y") for all ¢ < a; hence AMTP(xa5,¥%)5 €
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J} < {r(z¢,y%)|c < @} = 7P(24,y"). This proves that A TP(xq;,y)7 €
J} = 7P(z,,y"). Thus by Theorem 3.8 in [3], 77 is a perfect saturated
fuzzy topogenous order. For the proof of 2) and 3), we use an argument
analogous to the one used in 1) and omit the details.

The following is immediate from (Ey).

PROPOSITION 2.6. If ¢ and ¢ are elementary operations such that
reded — red holds for any fuzzy semi-topogenous order T, then ed js
also an elementary operation.

COROLLARY 2.7. 1} If ¢ and ¢ are elementary operations such that
red — rde holds for any fuzzy semi-topogenous order 7, then ed=de g
also an elementary operation.

2) If © is an elementary operation, {1 is an elementary operation.

Proof. The first half is immediate from Proposition 2.6 and (E2).
The second half follows from (E,;) and Proposition 3.2 in (3] that [7]¢ =
([r]¢] for any fuzzy semi-topogenous order 7. Thus we have [r]® =
([T]€]¢; hence by Proposition 2.6, [1¢ is an elementary operation.

Using (E,),(E2),(Ej3). one has the following:

PROPOSITION 2.8. If * is an elementary operation, then for any
family {r,|j € J} of fuzzy semi-topogenous orders, ‘V{7,|j € JHe =
(V{75 € I

DEFINITION 2.9. An elementary operation € is suid to be symmet-
ric if it is permutable with the operation ¢, i.e., 7¢¢ = 7°¢ for any fuzzy
semi-topogenous order .

ProPoOSITION 2.10. * [l * and b are symmetric operations.

Proof. For any fuzzy semi-topogenous order 7 and any «., /4 € I*,
we have

[TC](avﬁ) = A {Tc(xa(z)v?lﬁ(y))imuy € ‘X}
A{T(1 — yﬂ(-"')J — To(n))lT, v € X}

I

= Mr(yi—py o' e,y € X}
=[r](1-48,1~a)
= [7](a, B),

and therefore ! is symmetric. Similarly we have the remaining cases.
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COROLLARY 2.11. 1) If © is a symmetric elementary operation and
T is a symmetric fuzzy semi-topogenous order, then 7¢ is also symmet-
ric.

2) If © is a symmetric elementary operation, then *¢ is also a sym-
metric elementary operation.

Proof. 1) It is immediate from the definitions.

2) We note that for any fuzzy semi-topogenous order 7, 7°¢° = 7¢°¢ =
7, for ° and ° are symmetric. On the other hand, 7°¢ = %% =
[Ts A Tsc]e — [[Ts]e A [Tsc]e]e - [[Ts]e A [TS]EC}( — [Ts]ese = sese fl'OIIl
Lemma 2.3, Proposition 2.8 and Proposition 2.10, which completes the
proof by Proposition 2.6.

3. Ordinary operations

In what follows, by TO(X) we mean the sct of all saturated fuzzy
topogenous orders on a set X of which the power set will be denoted
by P(TO(X)). A member A of P(TO(X)) will be called a fuzzy order
family on X.

For an fuzzy order family A = {rj|j € J} on a set X, let A9 =
{[V{mk|k € F}]|F is a non-emnpty finite subset of J}. Then A? is
clearly the coarsest directed fuzzy order family finer than A.

For a fuzzy order family A on a set X, let [A] = {[r]|]7 € A}.
DEFINITION 3.1. Foraset X,amap ° : P{TO(X))— P(TO(X))

(A A° A€ P(TO(X))) is called an ordinary operation if it satisfies
the following:

(O1) A=A°

(02) A°° = A°,

(O3) A < B implies A° < B°,
(Os) A* < A2

(Os) A% < A%,

(Os) Foramap f:Y — X [f~(A°)] < [(f"1(A))°], where f~1(A)
denotes {f~!(7)|r € A}.
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REMARK 3.2. 1) 9 is an ordinary operation.

2) For an elementary operation ° : O(X) — O(X), it follows from
Proposition 2.2 that °(TO(X)) C TO(X), and henc> one has an op-
eration on P(TO(X)) given by the images, which is also denoted by
¢: P(TO(X)) — P(TO(X)). Then ¢ is an ordinary cperation.

3) ! is an ordinary operation, where A" = [V{r|r € A}] for any fuzzy
order family A.

Proof. 1) Clearly 9 satisfies (O;) - {Os) except (Cs). For (Os), we
note that for any fuzzy order family {r;|; € J} on a set X, [V{r{|) €
J} < [v{r|j € J}]? (See Proposition 3.2 in (3]) and hence A% < A9°
for A € P(TO(X)).

2) We note that for any A € P(TO(X)),A® = {#°|r € A}. Thus
¢ satisfies (O;) — (Og) except (Os) by the corresponding (Ey) — { Es).
For A € P(TO(X)) and (,n € A, one has (“ V¢ < (( V) by (E3)
and hence A%° is directed and A® < AY. Thus one has A®Y < A9,
Thus © satisfies (Es).

3) It follows from the same argument as that in 1;.

The following is immediate from the definition and we omit the
proof.

REMARK 3.3. 1) If © and * are ordinary operations such that Aokok
= A°* holds for any fuzzy order family A, then °F is also an ordinary
operation.

2) If ¢ is an elementary operation, then ¢ and '

are ordinary
operations.

3) A saturated fuzzy syntopogenous structure S on a set 1s precisely
fuzzy order family such that §9 < § < §2.

4) A fuzzy order family A is directed if and onlv if, A = A, or
equivalently A9 < A.

Noting that a fuzzy order family A is directed if and only if, A9 = A,
or equivalently AY < A, one has the following from (();) and (Os).

LEMMA 3.4. If A is a directed fuzzy order family and ° an ordinary
operation, then the fuzzy order family A° is also directed.

PROPOSITION 3.5. IfS is a saturated fuzzy syntopogenous structure
on a set X and ° is an ordinary operation, then S° is also a saturated
fuzzy syntopogenous structure on X.
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Proof. Since § is directed, S°9 < §° by Lemnma 3.4. On the other
hand, §° < §%° < §°? from Remark 3.3.3, (O3) and (Oy4). Thus §° is

again a saturated fuzzy syntopogenous structure on X.

DEFINITION 3.6. Let ° be an ordinary operation. Then a satu-
rated fuzzy syntopogenous structure S on a set is said to be an °-
syntopogenous structure if S = §°.

Notation. For an ordinary operation °, we will denote the full sub-
category of [FSyn| determined by all saturated fuzzy °-syntopogenous
spaces by [°-FSyn].

PROPOSITION 3.7. If ° and * are ordinary operations such that
A° < AF holds for any fuzzy order family A, then [F-FSyn] is coreflec-
tive in [°-FSyn].

Proof. Take any (X,S) € [>FSyn], then clearly (X,S*) € [F-FSyn]
and the identity map 1x : (X,S¥) — (X,S) is continuous. Suppose
that (¥, T) € [*-FSyn] and f : (Y¥,T) — (X,S) is a continuous map.
Let g : (Y, T) — (X,S*) be the map f as set map. Since f is continuous
and (Y, T) € [*-FSyn], ¢7'(S)* < T¥ = T. Thus it follows from (Og)
and [T] = T that ¢ is continuous. Therefore 1x : (X,SF) — (X,S) is
the [¥-FSyn]-coreflection of (X.§).

The following is immediate from Proposition 3.7.

COROLLARY 3.8. If° is an ordinary operation and S is a saturated
fuzzy syntopogenous structure, then S° is the coarsest saturated fuzzy
°~syntopogenous structure finer than the syntopogenous structure S.

DEFINITION 3.9. A saturated fuzzy syntopogenous spaces (X, S) is
called:

1) perfectif S = SP.

2) biperfect if S = S?.

3) symmetric if S = §°.

4) biperfect symmetric if S = Sb*.

5) topogenous if S = St.

Noatation. 1) Let [PFSyn| ([BFSyn], [SFSyn], [BSFSyn], resp.)
denote the full subcategory of [FSyn] determined by saturated fuzzy
perfect (biperfect, symmetric, biperfect symmetric, resp.) syntopoge-
nous spaces.
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2) Let [TFSyn] ([PTFSyn], [STFSyn), resp.) denote the full subcat-
egory of [FSyn] determined by all saturated fuzzy (perfect, symmetric,
resp.) topogenous spaces.

Noting that [FSyn|=[""FSyn], [PFSyn|=[?~FSyn].
[BFSyn|=[""FSyn], [BSFSyn|=[**"FSyn], [TFSyn]=/'~FSyn],
[TSFSyn]=[**~"FSyn] and [PTFSyn]=:[**~FSyn], we have the following
from Proposition 3.8.

THEOREM 3.10. [PFSyn|, [BFSyn|, [SFSyn], [BSFSyn], [TFSyn],
[PTFSyn] and [STFSyn] are all coreflective in [FSyn!.

2) [BFSyn] is coreflective in [PFSyn].

3) [BSFSyn} is coreflective in [BFSyn)].

4) [BSFSyn| is coreflective in [SFSyn].

5) [STFSyn] is coreflective in [TFSyn].

6) [PTFSyn] is coreflective in [TFSyn].

Notation. 1) [QFProx] ([FProx], resp.) denotes the category of all
saturated fuzzy proximity spaces (synunetric saturated fuzzy proximity
spaces, resp.} and all proximity maps between them.

2) FTop denotes the category of all fuzzy neighborhood spaces and
continuous maps between them.

3) QFUnif (FUnif, resp.) denotes the category of fuzzy quasi-
uniform spaces (fuzzy uniform spaces. resp.) and uniformly continuous
maps between them.

It is known [3] that [BFSyn] ([BSFSyn], [PTFSyn]|, [STFSyu], [TF-
Syn}, resp.) is isomorphic with QFUnif (FUnif, FTop, [FProx], |QF-
Prox], resp.). Thus we have the following by Theorera 3.10.

COROLLARY 3.11. 1) [FProx] is coreflective in [QFProx].

2) FTop is coreflective in [QFProx|.

3) FUnif is coreflective in [QF Unif|.
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