• 제목/요약/키워드: prototype model

검색결과 1,551건 처리시간 0.147초

콘크리트 포장 축소모델 배합의 재료적 상사성에 관한 연구 (A Study on the Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement.)

  • 배주성;고영주;김재경;김평수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 1997
  • The objective of this study is to provide the information on the small-scale model mix proportion when the behavior of prototype concrete pavement is studied through small-scale model experiments. However it is difficult to obtain a model material to simulate the prototype concrete by scaling the individual components according to the laws of similitude. In this paper, the stress-strain behavior in uniaxial compression is used as a means to correlate materials similitude between the prototype and the model concrete. Based on th results of experiments, We compared the stress-strain curves of prototype and model concrete mixes using a nondimensional basis. In order to simulate the stress-strain curves of prototype concrete, it is important that various mix as of model concrete selected properly which are varied from aggregate grading, cement-aggregate and sand-aggregate ratio.

  • PDF

Effect of countermeasures on the galloping instability of a long-span suspension footbridge

  • Ma, Ruwei;Zhou, Qiang;Li, Mingshui
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.499-509
    • /
    • 2020
  • The aeroelastic stability of a long-span suspension footbridge with a bluff deck (prototype section) was examined through static and dynamic wind tunnel tests using a 1:10 scale sectional model of the main girder, and the corresponding aerodynamic countermeasures were proposed in order to improve the stability. First, dynamic tests of the prototype sectional model in vertical and torsional motions were carried out at three attack angles (α = 3°, 0°, -3°). The results show that the galloping instability of the sectional model occurs at α = 3° and 0°, an observation that has never been made before. Then, the various aerodynamic countermeasures were examined through the dynamic model tests. It was found that the openings set on the vertical web of the prototype section (web-opening section) mitigate the galloping completely for all three attack angles. Finally, static tests of both the prototype and web-opening sectional models were performed to obtain the aerodynamic coefficients, which were further used to investigate the galloping mechanism by applying the Den Hartog criterion. The total damping of the prototype and web-opening models were obtained with consideration of the structural and aerodynamic damping. The total damping of the prototype model was negative for α = 0° to 7°, with the minimum value being -1.07%, suggesting the occurrence of galloping, while that of the web-opening model was positive for all investigated attack angles of α = -12° to 12°.

연약지(軟弱地)에서 상사성(相似性) 원리(原理)를 이용(利用)한 차륜(車輪)의 성능분석(性能分析)에 관한 연구(硏究) (Similitude Study of Performance of Lugged Wheel on Soft Soils)

  • 이규승
    • Journal of Biosystems Engineering
    • /
    • 제18권3호
    • /
    • pp.220-229
    • /
    • 1993
  • A dimensional analysis was carried out to investigate if model agricultural radial tire can predict the tractive performance of prototype tires. Experimental data was analyzed to prove the results of dimensional analysis. The results was summerized as follows ; 1. When the model and prototype tires are tested under the same soil conditions, inflation pressure, slip and dynamic load, traction coefficient ratio between two tires depend on the geometry of two tires. 2. According to the regression analysis of the experimental data, traction equation parameters of the prototype tires can be predicted from the that of model tire 3. Predicted traction coefficient of prototype tire, calculated from the traction equation paramters, showed good correlation with that of experimental results. Thus it was possible to predict net and gross traction of prototype tire from the model traction equation parameters.

  • PDF

FRBR 기반의 OPAC 프로토타입 개발에 관한 연구 (Design and Implementation of an OPAC Prototype based on FRBR Model)

  • 이은주
    • 한국도서관정보학회지
    • /
    • 제49권2호
    • /
    • pp.221-244
    • /
    • 2018
  • 이 연구의 목적은 우리 이용자의 요구와 행태에 기반 한 FRBR 기반 OPAC 프로토타입을 실험적으로 구현해 보는데 있다. 이러한 목적을 위해 이 연구에서는 시스템 개발방법 중 사용자의 요구사항이 민감하게 반영되어야 할 경우 활용할 수 있는 방법인 프로토타이핑(prototyping) 기법을 적용하여 연구를 수행하였다. 구체적으로, 이 연구에서는 (1) 국외 FRBR형 검색서비스에 대한 이용자 선호도 평가결과를 토대로 하여 프로토타입의 논리적 구조를 설계하고, (2) 설계한 논리적 구조에 따라 FRBR 기반 프로토타입을 물리적으로 개발한 다음, (3) 프로토타입에 대한 이용자 만족도 평가를 실시하였다. 이 때, 만족도 평가는 대학생 50명과 전문가 6명을 대상으로 수행하였다.

Surface Roughness Impact on Francis Turbine Performances and Prediction of Efficiency Step Up

  • Maruzewski, Pierre;Hasmatuchi, Vlad;Mombelli, Henri-Pascal;Burggraeve, Danny;Iosfin, Jacob;Finnegan, Peter;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.353-362
    • /
    • 2009
  • In the process of turbine modernizations, the investigation of the influences of water passage roughness on radial flow machine performance is crucial and validates the efficiency step up between reduced scale model and prototype. This study presents the specific losses per component of a Francis turbine, which are estimated by CFD simulation. Simulations are performed for different water passage surface roughness heights, which represents the equivalent sand grain roughness height. As a result, the boundary layer logarithmic velocity profile still exists for rough walls, but moves closer to the wall. Consequently, the wall friction depends not only on roughness height but also on its shape and distribution. The specific losses are determined by CFD numerical simulations for each component of the prototype, taking into account its own specific sand grain roughness height. The model efficiency step up between reduced scale model and prototype value is finally computed by the assessment of specific losses on prototype and by evaluating specific losses for a reduced scale model with smooth walls. Furthermore, surveys of rough walls of each component were performed during the geometry recovery on the prototype and comparisons are made with experimental data from the EPFL Laboratory for Hydraulic Machines reduced scale model measurements. This study underlines that if rough walls are considered, the CFD approach estimates well the local friction loss coefficient. It is clear that by considering sand grain roughness heights in CFD simulations, its forms a significant part of the global performance estimation. The availability of the efficiency field measurements provides an unique opportunity to assess the CFD method in view of a systematic approach for turbine modernization step up evaluation. Moreover, this paper states that CFD is a very promising tool for future evaluation of turbine performance transposition from the scale model to the prototype.

프로토타입 해사데이터 모델 개발 (Development of a Prototype S-100 Data Model)

  • 강남선;손금준;정유준;김혜진
    • 해양환경안전학회지
    • /
    • 제24권5호
    • /
    • pp.527-536
    • /
    • 2018
  • 본 논문에서는 한국형 이내비게이션 프로젝트의 사고취약선박 모니터링 지원서비스 중 상황대응 및 상황관리 프로토타입 모델을 개발하였다. 프로토타입 모델 개발을 위해서 해사데이터 교환 표준 현황과 S-100 표준 데이터 모델 개발 절차를 분석하고 개발 절차에 따라 서비스의 요구사항 분석 및 관련 표준을 참고하여 상황대응 및 상황관리 모델에 대한 프로토타입 어플리케이션 스키마를 개발하고, S-100 표준에 맞추어 프로토타입 피쳐 카탈로그와 프로토타입 포트레이얼 카탈로그를 제작하였다. 개발된 프로토타입 데이터 모델의 검증을 위해서 광양항을 기반으로 테스트 데이터셋을 제작하고, S-100 기반 데이터의 유효성 검증을 위한 소프트웨어를 통해 검증한 결과 모든 데이터가 유효함을 확인하였으며, S-100 뷰어에서 정확한 위치에 지정된 심볼이 표출됨을 확인하였다.

Numerical and experimental study on the scale effect of internal solitary wave loads on spar platforms

  • Wang, Xu;Zhou, Ji-Fu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.569-577
    • /
    • 2020
  • Based on laboratory experiments and numerical simulations, the scale effect of Internal Solitary Wave (ISW) loads on spar platforms is investigated. First, the waveforms, loads, and torques on the spar model at a laboratory obtained by the experiments and simulations agree well with each other. Then, a prototype spar platform is simulated numerically to elucidate the scale effect. The scale effect for the horizontal forces is significant owing to the viscosity effect, whereas it is insignificant and can be neglected for the vertical forces. From the similarity point of view, the Froude number was the same for the scaled model and its prototype, while the Reynolds number increased significantly. The results show that the Morison equation with the same set of drag and inertia coefficients is not applicable to estimate the ISW loads for both the prototype and laboratory scale model. The coefficients should be modified to account for the scale effect. In conclusion, the dimensionless vertical forces on experimental models can be applied to the prototype, but the dimensionless horizontal forces of the experimental model are larger than those of the prototype, which will lead to overestimation of the horizontal force of the prototype if direct conversion is implemented.

시멘트콘크리트 포장체의 거동연구를 위한 축소모델 배합의 재료적 상사성 (The Similitude of Material for Small-Scale Model Mix Proportion of Concrete Pavement)

  • 고영주;이용우;배주성
    • 콘크리트학회지
    • /
    • 제11권2호
    • /
    • pp.139-145
    • /
    • 1999
  • 본 연구는 시멘트콘크리트 포장체의 거동연구를 위한 축소모형실험에 앞서 모형시험체의 제작에 가장 중요한 변수인 재료적 상사성을 확보하기 위한 방법론을 기술하였다. 현재 고속도로의 콘크리트 포장 배합설계기준과 동일한 배합비로 제작한 시험편과 골재의 최대치수를 축소하고 W/Cm C/a, S/a, 골재종류를 변수로 하여 총 224개의 원형공시체를 제작하여 그들의 응력-변형률 거동을 분석하므로써 재료적 상사성을 만족하는 모형배합비를 도출하였다. 모형콘크리트 배합비로 쇄석은 C/a 31%에서 S/a 28%, 강자갈은 C/a 30%일 때 S/a 27%가 가장 적합한 것으로 나타났다. 이는 실내 모형실험에 의해 콘크리트포장체의 거동연구를 하고자 할때 모형실험에 대한 신뢰성을 향상시키고, 향후 연구의 기초자료를 제공할 수 있으리라 판단된다.

Investigation of water length effects on the modal behavior of a prototype arch dam using operational and analytical modal analyses

  • Sevim, Baris;Bayraktar, Alemdar;Altunisik, Ahmet Can
    • Structural Engineering and Mechanics
    • /
    • 제37권6호
    • /
    • pp.593-615
    • /
    • 2011
  • This study determines the water length effects on the modal behavior of a prototype arch dam using Operational and Analytical Modal Analyses. Achievement of this purpose involves construction of a prototype arch dam-reservoir-foundation model under laboratory conditions. In the model, reservoir length was taken to be as much as three times the dam height. To determine the experimental dynamic characteristics of the arch dam using Operational Modal Analysis, ambient vibration tests were implemented for empty reservoir and three different reservoir water lengths. In the ambient vibration tests, the dam was vibrated by natural excitations provided from small impact effects and the response signals were measured using sensitive accelerometers. Operational Modal Analysis software process signals collected from the ambient vibration tests, and Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification techniques estimated modal parameters of the dams. To validate the experimental results, 3D finite element model of the prototype arch dam was modeled by ANSYS software for empty reservoir and three different reservoir water lengths, and dynamic characteristics of each model were determined analytically. At the end of the study, experimentally and analytically identified dynamic characteristics compared to each other. Also, changes on the natural frequencies along to water length are plotted as graphs. Results suggest that reservoir water complicates the modal behavior of the arch dam significantly.

모델재료를 이용한 범용 플랜지의 레이디얼 압출 공정설계 (Design of the Radial Extrusion Process for the General-Purpose Flange Using Model Material)

  • 이상돈;변성광
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2008
  • This study is to compare and analyze the material flow, deformation characteristics, and forming load of flange by means of similitude experimental method of model material using plasticine. In order to find optimal forming conditions, prototype experiments were designed to investigate forming characteristics of general-purpose flange under various working conditions. As a result of prototype experiments, billet thickness and gap-height ratio was found to be the most influential experimental parameter in flange forming. Forming loads from prototype experiments were compared to the results of finite element analysis after conducting estimation of forming loads of real material. Results of prototype experiments based on model material techniques are expected to be used as a basic data of die design f3r the development of products and process.