• Title/Summary/Keyword: protopanaxatriol

Search Result 138, Processing Time 0.021 seconds

Quantitative Analysis of Ginsenosides in Red Ginseng Extracted under Various Temperature and Time (홍삼의 추출 시간 및 온도에 따른 Ginsenosides 함량 비교분석)

  • Yang, Byung-Wook;Han, Sung-Tai;Ko, Sung-Kwon
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.4 s.147
    • /
    • pp.217-220
    • /
    • 2006
  • This study compared the contents of ginsenoside according to the extract conditions of red ginseng to provide basic information for developing functional food using red ginseng. According to the result, the content of crude saponin was highest in 72 hours of extraction at $82^{\circ}C$ (RG-823). The content of prosapogenin (ginsenoside $Rh_1,\;Rh_2,\;Rg_2,\;Rg_3$) was highest in 48 hours of extraction, and followed by 72 and 24 hours at $82^{\circ}C$. And at $93^{\circ}C$ the prosapogenin contents were highest in the order of 48 hours, and next in 24 and 72 hours. In addition, ginsenoside $Rb_1,\;Rb_2$ Rc and Re were not detected in 72 hours of extraction at $93^{\circ}C$ (RG-933) presumedly due to hydrolysis, but ginsenoside Rd, Rf and $Rg_1$ were detected as long as 72 hours of extraction. These results show that protopanaxatriol group is relatively more resistant to heat than protopanaxadiol group.

Effects of Ginsenoside Total Saponins on Experimental Irritable Bowel Syndrome in Rats

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.2
    • /
    • pp.94-99
    • /
    • 2005
  • In the previous study, we reported that the in viかo inhibitory effect of ginsenosides, active ingredient of Panax ginseng, on $5-HT_{3A}$ receptor channel activity is coupled to in vivo anti-vomiting and anti-nausea effect. In the present study, we further investigated that the inhibitory effect of ginsenosides, active ingredient of Panax ginseng, on 5-HT3A receptor channel activity is also coupled to attenuation of irritable bowel syndrome (IBS), which is induced by colorectal distention (CRD) and $0.6\%$ acetic acid treatment. The CRD-induced visceral pains induced by CRD and acetic acid treatment are measured by frequency of contractions of the external oblique muscle in conscious rats. Treatment of GTS significantly inhibited CRD-induced visceral pain with dose-dependent manner. The $EC_{50}$ was $5.5{\pm}4.7$ mg/kg ($95\%$ confidence intervals: 1.2-15.7) and the antinociceptive effect of GTS on visceral pain was persistent for 4 h. We also compared the effects of protopanaxadiol (PD) ginsenosides and protopanaxatriol (PT) ginsenosides with saline on acetic acid-and CRD-induced visceral pain, and found that protopanaxatriol (PT) ginsenosides was much more potent than PD ginsenosides in attenuating CRD-induced visceral pain. These results indicate that U ginsenosides of Panax ginseng are components far attenuation of experimentally CRD-induced visceral pains.

Production of ginsenoside F1 using commercial enzyme Cellulase KN

  • Wang, Yu;Choi, Kang-Duk;Yu, Hongshan;Jin, Fengxie;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2016
  • Background: Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods: To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and $50^{\circ}C$. Results: Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and $50^{\circ}C$ for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with $91.5{\pm}1.1%$ chromatographic purity. Conclusion: The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.

Metabolism of Ginseng Saponins by Human Intestinal Bacteria (Park II) (사람의 장내세균에 의한 인삼 사포닌의 대사(제2보))

  • Hasegawa, Hideo;Ha, Joo-Young;Park, Se-Ho;Matumiya, Satoshi;Uchiyama, Masamori;Huh, Jae-Doo;Sung, Jong-Hwan
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.35-41
    • /
    • 1997
  • Following ginsenoside-Rb1-hydrolyzing assay, strictly anaerobic bacteria were isolated from human feces and identified as Prevotella oris. The bacteria hydrolyzed ginsenoside Rb1 and Rd to $20-O-{\beta}-D-glucopyranosyl-20(S)-protopanaxadiol$ (I), ginsenoside Rb2 to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow}6)-{\beta}-D-glucopyranosyl] - 20(S)-protopanaxadiol$ (ll) and ginsenoside Rc to $20-O-[{\alpha}-L-arabinofuranosyl (1{\rightarrow} 6){\beta}-D-g1ucopyranosyl]-20(S)-protopanaxadiol$ (III) like fecal microflora, but did not attack ginsenoside Re nor Rgl (Protopanaxatriol-type). Pharmacokinetic studies of ginseng saponins was also performed using specific pathogen free rats and demonstrated that the intestinal bacterial metabolites I-111, 20(S)- protopanaxatriol(IV) and 20(S)-protopanaxadiol(V) were absorbed from the intestines to $blood(0.4-5.1\;{\mu}g/ml)$ after oral administration with total saponin(1 g/kg/day).

  • PDF

Inhibitory Effects of Ginsenoside Metabolites, Compound K and Protopanaxatriol, on $GABA_C$ Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Hwang, Sung-Hee;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Joon-Hee;Lee, Sang-Mok;Ahn, Yun Gyong;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The ${\gamma}$-aminobutyric acid $receptor_C$ ($GABA_C$) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on $GABA_C$ receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant $GABA_C$ receptor (${\rho}$ 1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing $GABA_C$ receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current ($I_{GABA}$). Interestingly, pre-application of M4 inhibited $I_{GABA}$ more potently than CK in a dose- dependent and reversible manner. The half-inhibitory concentration ($IC_{50}$) values of CK and M4 were $52.1{\pm}2.3$ and $45.7{\pm}3.9{\mu}M$, respectively. Inhibition of $I_{GABA}$ by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate $GABA_C$ receptor channel activity in the brain, including in the eyes.

Effects of Saponins on the Osmotic Behavior of Multilamellar Liposomes

  • Yu, Byung-Sul;Chung, Hyun-Ho;Kim, Aeri
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 1984
  • Effects of total ginseng saponin, 20-S-protopanaxadiol saponin, 20-S-protopanaxatriol saponin and playcodon saponin on the osmotic behavior of liposomes were investigated by optical measurement. These saponins showed different activities on liposomal membrane, and cholesterol in liposomes was an important factor to this variation of saponin activities.

  • PDF

Study on Ginseng Protopanaxadiol and Protopanaxatriol Saponins-Induced Antinociception

  • Shin, Young-Hee;Kim, Seok-Chang;Han, Ji-Won;Kim, Dae-Hoon;Han, Sang-Sub;Shin, Dong-Ho;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.143-149
    • /
    • 1997
  • We studied the effects of ginseng protopanaxadiol (PD) and protopanaxatriol (PT) saponins on the analgesia using several pain tests such as writhing, formalin, and tail-flick test. Using mouse, pretreatment of PD or PT saponins (i.p.) induced inhibition of abdominal constrictions caused by 0.9% acetic acid administration(i.p.). The $AD_{50}$ was around 27 (17-43) mg/kg for PD and 13.5 (3-61) mg/kg for PT saponins in writhing test. Both PD and PT saponins also showed the inhibition of bitings and lickings of hindpaw after administration of 1% formalin. In particular, both PD and PT saponins showed analgesic effects on second phase of pain. The $AD_{50}$ was 44.5 (26-76) mg/kg for PD and 105 (55-200) mg/kg for PT saponins in second phase of formalin test. For first phase pain inhibition by PD or PT saponins, they were required higher concentrations. However, PD saponins showed weak analgesic effects in tail-flick test with high concentration. In conclusion, we found that both PD and PT saponins have the analgesic effects in writhing test and second phase of pain in formalin test. These results suggest that both PD and PT saponins inhibit neurogenic or tonic pain rather than acute pain.

  • PDF

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

A Novel Ginsenosidase from an Aspergillus Strain Hydrolyzing 6-O-Multi-Glycosides of Protopanaxatriol-Type Ginsenosides, Named Ginsenosidase Type IV

  • Wang, Dong-Ming;Yu, Hong-Shan;Song, Jian-Guo;Xu, Yu-Feng;Liu, Chun-Ying;Jin, Feng-Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1057-1063
    • /
    • 2011
  • Herein, a novel ginsenosidase, named ginsenosidase type IV, hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides (PPT), such as Re, R1, Rf, and Rg2, was isolated from the Aspergillus sp. 39g strain, purified, and characterized. Ginsenosidase type IV was able to hydrolyze the 6-O-${\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Re and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-xyloside of R1 into ginsenoside Rg1. Subsequently, it could hydrolyze the 6-O-${\beta}$-D-glucoside of Rg1 into F1. Similarly, it was able to hydrolyze the 6-O-$_{\alpha}$-L-($1{\rightarrow}2$)-rhamnoside of Rg2 and the 6-O-${\beta}$-D-($1{\rightarrow}2$)-glucoside of Rf into Rh1, and then further hydrolyze Rh1 into its aglycone. However, ginsenosidase type IV could not hydrolyze the 3-O- or 20-O-glycosides of protopanaxadiol-type ginsenosides (PPD), such as Rb1, Rb2, Rb3, Rc, and Rd. These exhibited properties are significantly different from those of glycosidases described in Enzyme Nomenclature by the NC-IUBMB. The optimal temperature and pH for ginsenosidase type IV were $40^{\circ}C$ and 6.0, respectively. The activity of ginsenosidase type IV was slightly improved by the $Mg^{2+}$ ion, and inhibited by $Cu^{2+}$ and $Fe^{2+}$ ions. The molecular mass of the enzyme, based on SDS-PAGE, was noted as being approximately 56 kDa.