• Title/Summary/Keyword: proton exchange membrane fuel Cell

Search Result 430, Processing Time 0.025 seconds

A Study on the Effects of Inverter Ripple Currents to the Proton Exchange Membrane Fuel Cell Stack by Using on Equivalent Impedance Model (양자 교환막형 연료전지의 등가 임피던스 모델을 이용한 인버터에 의한 맥동 전류의 영향에 관한 연구)

  • Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.230-237
    • /
    • 2004
  • In this paper the effects of inverter ripple currents to the Proton Exchange Membrane Fuel Cell Stack (PEMFCS) is analyzed by the impedance model. The proposed method employs the frequency analysis technique to derive an equivalent impedance model of the fuel cell stack and the effects of the inverter ripple current are investigated. The calculated results m then verified by means of experiments on commercially available PEMFCSs. The experimental results show that the ripple current can contribute up to 10[%] reduction in the available output power.

Preparation and Characterization of Anion Exchange Membrane Based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) with Spacer-type Conducting Group (Spacer-type 전도기가 도입된 가교형 poly(2,6-dimethyl-1,4-phenylene oxide) 음이온 교환막의 제조 및 특성평가)

  • Lim, Haeryang;Kim, Tae-Hyun
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.425-433
    • /
    • 2017
  • As the problems related to the environmental pollution such as carbon dioxide emission are emerging, the need for the renewable energy and environmentally friendly energy is getting intense. Fuel cells are eco-friendly energy generation devices that generate electrical energy and produce water as a sole by-product. Compared to the traditional proton exchange membrane fuel cell (PEMFC), anion exchange membrane alkaline fuel cell (AEMAFC) has a main advantage of possibility to use low cost metal catalysts due to its faster kinetics. The AEM, which conducts $OH^-$ ions, should possess high ion conductivity as well as high chemical stability at high pH conditions. We hereby introduce a crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) having a spacer-type conducting group as novel AEM, and report a high ion conductivity ($67.9mScm^{-1}$ at $80^{\circ}C$) and mechanical properties (Young's modulus : 0.53 GPa) as well as chemical stability (6.8% IEC loss at $80^{\circ}C$ for 1,000 h,) for the developed membrane.

Preparation of PtRu catalysts Using Galvanostatic Pulse Electrodeposition on Nafion(Na+) bonded Carbon Layer for PEMFC (전기 환원법을 이용한 고분자 전해질 연료전지용 PtRu 전극제조)

  • Ra, Young-Mi;Lee, Jae-Seung;Kim, Ha-Suck
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.411-412
    • /
    • 2006
  • PEM(proton exchange membrane) fuel cell have been receiving considerable interest as power source because of high-energy efficiency. However by using reforming hydrogen gas, CO poisoning occur in anode. To improve CO tolerance PtRu catalysts were prepared by galvanostatic pulse electrodeposition. The composition(atomic ratio) of catalysts are controllable by using different concentrations of PtRu solutions. Also, the particle sizes of PtRu on carbon are similar to about $3.5{\sim}4nm$ regardless of concentration.

  • PDF

Development of Monitoring System for Proton Exchange Membrane fuel Cell Driven Scooter (고분자 전해질 연료전지 스쿠터 모니터링 시스템 개발)

  • Kim, Dae-Hong;Kim, Jun-Young;Park, Kyu-Nam;Park, Kwon-Pil;Chung, Hoi-Bum;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.167-169
    • /
    • 2008
  • A 1.2KW Proton Exchange Membrane Fuel Cell(PEMFC) stack(Nexa Power Module) is installed to motor driven general scooter. The 24V, 650W BLDC motor is used for actuator and 2nd battery(24V, 4Ah) is used for stable starting of this motor. The operating information of Nexa Power Nodule is transmitted by RS-232 serial communication to notebook PC, and that data is analysed and displayed by the LabVIEW monitoring system.

  • PDF

Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

  • Choi, Min-Ho;Beom, Won-Jin;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.281-288
    • /
    • 2010
  • This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at $75^{\circ}C$ than $25^{\circ}C$. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution.

Analysis of Water Transport through Measurement of Temperature and Relative Humidity in PEMFC at OCV (개방회로 상태 PEMFC 내부 온도와 습도 측정을 통한 수분투과 분석)

  • KIM, TAEHYEONG;HAN, JAESU;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.353-362
    • /
    • 2022
  • In this study, water diffusion in proton exchange membrane fuel cell at open circuit voltage (OCV) was analyzed through experiment. First, the reliability of the micro-sensor (SHT31) was verified. It was concluded the micro-sensor has an excellent reliability at 60℃ and 70℃. After the sensor reliability test, the temperature and relative humidity measurement in bipolar-plate was conducted at OCV. To analyze water distribution and water flux, the temperature and relative humidity was converted into dew point. To the end, it was found water concentration affects water diffusion.

Technical Trends for Fuel Cell Aircraft (연료전지항공기 기술 동향)

  • Kim, Keun-Bae
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Fuel cells are applied to the propulsion system of aircraft based on environmental-friendly characteristics with low noise and zero emission of CO2, currently many kinds of UAV and small manned aircraft equipped with fuel cells are being developed. Fuel cells for aircraft typically classified into PEMFC(Proton Exchange Membrane Fuel Cell) type and SOFC(Solid Oxide Fuel Cell) type and the system is developed to adapt missions and operational conditions of aircraft. For UAV, various types of aircraft mostly based on PEM fuel cell technology are investigated for military or commercial uses, and the stability and endurance of system will be improved. For small manned aircraft, many researches are carried out to substitute the propulsion system by fuel cell, also some developments for the higher performance of APU of large commercial aircraft to apply fuel cells are in progress. In the future, a fuel cell aircraft will be expected to improve the reliability and efficiency with higher power density.

  • PDF

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kim, Da-Eun;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • Sulfonated poly(arylene ether sulfone) (SPAES)-3-mercaptopropyl silica gel (3MPTSG) composite membranes with improved oxidative stability were prepared for polymer electrolyte fuel cell application. It has been reported that ether part of main chain of aromatic hydrocarbon based membranes were weak to radical attack to decrease membrane durability. In this study, the hydrophilic inorganic particles were introduced by minimizing a decrease in ion conductivity and increasing an oxidative stability. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and contact angle, etc. As a result, increasing amount of the 3MPTSG resulted in decrease in proton conductivities and water uptakes at 100% R.H. but enhanced thermal and oxidative stabilities.

Use of Inner Ionomer Solution in Preparing Membrane-Electrode Assembly (MEA) for Fuel Cells and Its Characterization

  • Seo, Seok-Jun;Woo, Jung-Je;Yun, Sung-Hyun;Park, Jin-Soo;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • Optimization of ionomer solution was conducted in order to improve the performance of MEAs in PEMPC. The interface between membrane and electrodes in MEAs is crucial region determining fuel cell performance as well as ORR reaction at cathode. Through the modification of Nafion ionomer content at the interface between membrane and electrodes, an optimal content was obtained with Nafion 115 membranes. Two times higher current density was obtained with the outer Nafion sprayed MEA compared with the non-sprayed one. In addition, the symmetrical impedance spectroscopy mode (SM) exhibited that the resistances of membrane area, proton hydration, and charge transfer decreased as the outer Nafion is sprayed. From the polarization curves and SM, the highest current density and the lowest resistance was obtained at the outer ionomer content of $0.15\;mg\;cm^{-2}$.