• 제목/요약/키워드: proton diffusivity

검색결과 3건 처리시간 0.016초

분자동역학 전산모사에서 force-field의 종류가 수소이온 확산도 계산에 미치는 영향 (Effect of Force-field Types on the Proton Diffusivity Calculation in Molecular Dynamics (MD) Simulation)

  • 이지현;박치훈
    • 멤브레인
    • /
    • 제27권4호
    • /
    • pp.358-366
    • /
    • 2017
  • 연료전지용 전해질막의 성능에 있어서 가장 중요한 요소는 수소이온이 전해질막 내부에 형성된 수화채널을 따라서 얼마나 빨리 전달될 수 있느냐이다. 여기에는 수화채널의 모폴로지 및 수소이온의 확산도 등이 매우 중요한 요소가 되는데, 이를 규명하기 위하여 다양한 분자동역학 전산모사 연구가 진행되고 있다. 분자동역학 계산에 있어서 각 원자의 움직임 및 상호작용을 미리 변수화 시켜 놓은 force-field는 필수 요소 중 하나로서, 본 연구에서는 이러한 force-field의 종류가 전해질막 전산모사에 미치는 영향을 분석하기 위하여, 다양한 force-field를 이용하여 연료전지용 전해질막의 수소이온 확산도를 계산하였다. 이 과정에서 non-bonding interaction을 결정하는 전하 값이 수화채널 모폴로지 형성에 매우 중요한 역할을 한다는 것이 밝혀졌으며, COMPASS force-field가 가장 정확한 수소이온 확산도 값을 얻음으로써 연료전지용 전해질막의 전산모사에 있어서 가장 적절한 force-field일 것으로 판단된다. 이러한 force-field의 적절한 선정은 최종 분자 구조 뿐만 아니라 수소이온 확산도에도 큰 영향을 주는 것을 알 수 있었으며, 연료전지용 전해질막 전산모사 수행 시에는 이러한 부분을 충분히 감안하여 force-field를 선택하여야 할 것이다.

격자볼쯔만법을 이용한 다공체의 유동특성 분석방법 개발에 관한 연구 (Development of Numerical Technique to Analyze the Flow Characteristics of Porous Media Using Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제40권11호
    • /
    • pp.689-695
    • /
    • 2016
  • 연료전지의 성능에 가장 큰 영향을 주는 요소 중에 하나가 가스확산층과 촉매층에서 물의 거동이다. 따라서 가스확산층의 특성에 따른 유체의 거동의 변화를 이해하는 것은 연료전지의 성능개선과 가스확산층의 설계를 위한 필수적인 요소이다. 이 연구에서는 가스확산층의 설계요소인 기공도, 굴곡도와 유효확산계수를 수치적으로 계산할 수 있는 방법을 제안한다. 제안한 방법의 검증을 위하여 지름이 일정한 구형입자를 이용하여 기공도가 다른 다공체를 만들고 구형입자에 Bounceback 조건을 적용한 격자 볼쯔만법 유동해석을 수행하였다. 다공체 내의 유동효과를 나타내는 투과도는 다공체에 의한 압력강하와 평균유속으로 계산하고, 질량이 없는 입자의 평균 다공체 통과 거리로부터 계산한 굴곡도와 기공도를 이용하여 계산한 유효확산계수를 Neale의 이론식과 비교하여 정확하게 일치하는 것을 확인하였다. 이 방법은 실제 다공체의 이미지를 이용한 계산에도 수정없이 이용할 수 있어 연료전지의 성능향상과 설계를 위한 가스확산층의 특성분석에 활용될 수 있다.

Numerical study of effect of membrane properties on long-cycle performance of vanadium redox flow batteries

  • Wei, Zi;Siddique, N.A.;Liu, Dong;Sakri, Shambhavi;Liu, Fuqiang
    • Advances in Energy Research
    • /
    • 제4권4호
    • /
    • pp.285-297
    • /
    • 2016
  • Fundamental understanding of vanadium ion transport and the detrimental effects of cross-contamination on vanadium redox flow battery (VRFB) performance is critical for developing low-cost, robust, and highly selective proton-conducting membranes for VRFBs. The objective of this work is to examine the effect of conductivity and diffusivity, two key membrane parameters, on long-cycle performance of a VRFB at different operating conditions using a transient 2D multi-component model. This single-channel model combines the transport of vanadium ions, chemical reactions between permeated ions, and electrochemical reactions. It has been discovered that membrane selecting criterion for long cycles depends critically on current density and operating voltage range of the cell. The conducted simulation work is also designed to study the synergistic effects of the membrane properties on dynamics of VRFBs as well as to provide general guidelines for future membrane material development.