• Title/Summary/Keyword: proton beam

Search Result 266, Processing Time 0.03 seconds

SPECTRAL DIAGNOSTICS OF THE ENERGETIC PARTICLES IN SOLAR FLARES

  • FANG C.;DING M. D.;HENOUX J. C.;GAN W. Q.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.295-298
    • /
    • 1996
  • Non-LTE calculations, with the non-thermal ionization effects included, indicated that for electron bombardment, the H$\alpha$ line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Ly$\alpha$ and Ly$\beta$ are also predicted at the beginning of the impulsive phase of flares. For the proton bombardment, no strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Ly$\alpha$ and Ly$\beta$ lines at the early impulsive phase of flares are significant. Our results show that the electron beam can also in some cases generate visible and UV continuum emission in white-light flares. However, at the onset phase, a negative flare may appear within several seconds, due to the increase of the H- opacity. Another spectroscopic signature of energetic particles, i.e. the impact polarization of atomic lines, is also mentioned.

  • PDF

Development of Membrane Type Liquid Variable Compensator

  • Takahashi, Seiji;Ochiai, Makoto;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.183-185
    • /
    • 2002
  • Heavy ion and proton therapy necessitate range weeks, which are time consuming. Three types of variable compensator, membrane type liquid variable compensator, are proposed by some of the authors to overcome the difficulties, by those arbitrarily thickness distribution of compensator obtained from treatment planning is created at the site of treatment. None of the ideas, however, is yet realized. In this research, we are trying to construct prototype membrane-type liquid variable compensator. This variable compensator partitions air and liquid with elasticity membrane and changes the surface of the elasticity membrane with the thread. The air and oil move through holes to and from the out of beam side of two boxes in which they are contained. The boxes are made of Plexiglas(PMMA), the thread which is made of nylon, the elasticity film which is made from latex for the moment.

  • PDF

Electrical and Optical Properties of Electrochromic Window with Both Lithium and Proton Conducting Polymer Electrolytic Media (리튬 및 프로톤 전도성 고분자전해질을 사용하여 제작한 Electrochromic 창의 전기 및 광학적 특성)

  • 박성용;이철환;김형선;조원일;조병원;윤경석;안춘호;우경근
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.46-54
    • /
    • 1995
  • An electrochromic(EC) cell was constructed using $WO_3$ as a electrochromic material and NiO as a counter electrode, deposited onto ITO-coated glass by the implementation of electron beam evaporation. The electrolytic media were both lithium and proton conducting polymers such as poly-acrylonitrile(PAN)-$LiClO_4$, poly-ethylene oxide(PEO)-$LiClO_4$, poly-vinyl butyral(PVB)-LiCl and PVB-H$_3$$PO_4$. Potentiodynamic cycling of the cells using PAN-$LiClO_4$, or PVB-$H_3$$PO_4$ electrolyte yielded a transmission variation of more than 40% at the wavelength of 632.8 nm within less than 10 sec response time at room temperature. These results indicate that these electrolytes, transparent in gel type, are premising for the application in large area electrochromic windows.

  • PDF

FIRST OPERATING TEST OF THE 700 MHz 1 MW PROTOTYPE KLYSTRON FOR A PROTON ACCELERATOR

  • Ko, Seung-Kook;Lee, Bo-Young;Lee, Kang-Ok;Hong, Jin-Seok;Jeon, Jae-Ha;Chung, Bo-Hyun;Noh, Seung-Jeong;Chung, Kie-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.779-784
    • /
    • 2006
  • The design, manufacturing process, and first operating test of a high power RF source for a proton accelerator are described. A klystron amplifier system has been developed for operation at 700 MHz, 1 MW and is composed of a triode type electron gun, six cavities, an RF output window, a beam collector, and an electromagnet. The prototype klystron was constructed and tested at a reduced duty to produce the designed output RF power.

Frequency and Length Adjustment of A PEFP Low-Beta Dumbbell

  • Changyi, Gao;An, Sun;Liping, Zhang;Yazhe, Tang;Yingmin, Li;Kim, Han-Sung;Cho, Yong-Sub
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.27-29
    • /
    • 2008
  • Superconducting RF cavities are being considered for accelerating a proton beam at 700 MHz in the linac of the Proton Engineering Frontier Project (PEFP) and its post-project. Dumbbell fabrication is a mid-process for manufacturing an elliptical superconducting RF cavity. During the dumbbell fabrication, control of the dumbbell length and the $TM010\;{\pi}$ mode frequencies is necessary to build up a desired cavity. A new formula with a perturbation measurement method is used to measure and calculate the frequencies of the individual half-cells of a PEFP low-beta dumbbell, and to tune the frequency and length of the half-cells. In this article, the tuning method and results of the PEFP low-beta dumbbells have been presented.

Room Temperature Luminescence from ion Beam or Atmospheric Pressure Plasma Treated SrTiO3

  • Song, Jin-Ho;Seok, Jae-Gwon;Yeo, Chang-Su;Lee, Gwan-Ho;Song, Jong-Han;Sin, Sang-Won;Choe, Jin-Mun;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.530-531
    • /
    • 2013
  • 3 MeV protonirradiated SrTiO3 (STO) single crystal exhibits a blue and green mixed luminescence. However, the same proton irradiated STO deposited with very thin Pt layer does not show any luminescence. This Pt layer involved in preventing the damage caused by arcingthat comes from tens of kV surface voltage build-up due to secondary electron induced charge up at the surface of insulator during ion beam irradiation. It implies that luminescence of ion irradiated STO originated from the modified STO surface layer caused by arcing rather than direct ion beam irradiation effect. Atmospheric pressure plasma, a simple and cost-effective method, treated STO also exhibits the same kind of blue and green mixed luminescence as the ion beam treated STO, because this plasma also creates a surface damage layer by arcing.

  • PDF

Measurement of the applicability of various experimental materials in a medically relevant reactor neutron source part two: Study of H3BO3 and B-DTPA under neutron irradiation

  • Ezddin Hutli;Peter Zagyvai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2419-2431
    • /
    • 2023
  • Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.

The Development of a beam measurement system for improving the beam output characteristics. (빔 출력 특성 개선을 위한 빔 측정 시스템 개발)

  • Kim, Dong-Myung;Moon, Ha-jung;Hur, Min-Gu;Yang, Seung-Dae;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.693-695
    • /
    • 2014
  • Radioactive isotopes for radiation diagnosis is production by using Cyclotron like a PET. Radioactive isotopes is influenced product yield according to shape and size of the proton beam and target irradiation position by cyclotron. And to develop a device for measuring the distribution of the beam to increase the loss of the beam. Beam measuring device is measured vertically beam current according move the two wires. In this way, by using the beam current value in each position you are able to know the cross section and location information of the beam. By scanning cross-section for X-axis Y-axis of beam acquires data of beam. Print this into 2D graph, and analyze the result. You can save this result by documentation process.

  • PDF

Depth Dose Distribution of Proton Beams by Variation of Tumor Density using Geant4 (Geant4 전산모사를 이용한 종양의 밀도 변화에 따른 양성자의 선량 분포)

  • Kim, You-Me;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.771-779
    • /
    • 2021
  • It is necessary to overlap several peaks to form spread out Bragg peak (SOBP) in order to cover the tumor volume because a mono-energetic proton beam forms a narrow Bragg peak. The tumor density has been considered as a brain tissue and then the absorbed dose of the tumor is calculated using Monte Carlo simulations. However, densities of tumors were not a constant. In this study, the SOBP of proton beams was calculated according to changing density of tumors by using Geant4. Tumors were selected as 10 mm and 20 mm width which were the treatment range in the brain phantom. The energies and relative weights of the proton beams were calculated using mathematical formula to form the SOBP suitable for the location and size of the tumor. As the density of the tumor was increased, the 95% modulation range and the practical range were decreased, and average absorbed dose in the 95% modulation range was increased. The change of the tumor density affects the dose distribution of the proton beams, which results in short SOBP within the tumor volume. The consideration of the tumor density affects the determination of the range, so that the margin of the treatment volume can be minimized, and the advantages of proton therapy can be maximized.