• Title/Summary/Keyword: proteorhodopsin

Search Result 4, Processing Time 0.02 seconds

Photochemical properties of a Rhodopsin for Light Energy Conversion obtained from Yellow Sea in Korea

  • Kim, So Young;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.52-55
    • /
    • 2013
  • Proteorhodopsin (PR) is a photoinduced proton pump found abundantly in ocean and fresh water habitat, and has an important role in photoenergy conversion to bioenergy in the living cells. Numerous sequences that encode PR protein variants were discovered by environmental genome sequencing and they indicated the high sequence similarity. A new-type of PR (YS-PR) which had been discovered from the surface of Yellow Sea was found to have only 5 amino acid differences from the previously known green-light absorbing PR (GPR) protein, but showed different photochemical properties. This YS-PR showed a 10 nm red-shifted absorption maximum, when compared with GPR. It also showed slower photocycling rate than GPR. However, the photoconversion rate of YS-PR was fast enough to pump protons. Four different amino acids out of 5 were similar to Blue-light absorbing PR (BPR), suggesting that those residues might be responsible for the observed spectral and photoconverting properties.

Draft genome sequence of a marine Flavobacteria Flagellimonas eckloniae DOKDO 007T (해양 Flavobacteria Flagellimonas eckloniae DOKDO 007T 의 유전체 염기서열 해독)

  • Kwon, Yong Min;Kumar, Patra Ajit;Kim, Sang-Jin;Kwon, Kae Kyoung
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.460-462
    • /
    • 2018
  • Flagellimonas eckloniae DOKDO $007^T$, isolated from the rhizosphere of the marine algae Ecklonia kurome collected from Dokdo Island, South Korea, is a marine Flavobacteria belonging to the family Flavobacteriaceae. The genome consists of 4,132,279 bp, 3,527 coding sequences with 37.85% G + C contents and two contigs in one scaffold chromosome. This strain contains a gene encoding proteorhodopsin, as well as other retinal biosynthesis genes, allowing it to utilize sunlight as an energy source. The strain contained only few segment of flagellar constructing gene cluster and this is not consistent with genus name Flagellimonas, therefore, revision of the genus name is required.

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins

  • Kwon, Soon-Kyeong;Jun, Sung-Hoon;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.633-641
    • /
    • 2020
  • Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the '3 omega motif.' This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B-C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these 'omega rhodopsins,' and speculated on their evolutionary origin of functional diversity.