• 제목/요약/키워드: proteomics

검색결과 637건 처리시간 0.036초

Development of Proteomics and Applications of Proteomics in Toxicology

  • Jung, Woon-Won;Huh, Yoon-Ee;Ryu, Jae-Chun;Lee, Eun-Il;Sul, Dong-Geun
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.7-12
    • /
    • 2005
  • Proteomics has recently received intense scientific interest after the completion of the Human Genome Project, because this genome-based high technology allows to search new drug targets or diagnostic markers. Many proteome projects including Human plasma proteome projects (HPPP), Human liver proteome projects (HLPP), Human brain proteome projects (HBPP), and Mouse and Rat Proteome Project (MRPP) have been carried out and proteomic analytical techniques have been developed in second dimensional electrophoresis (2-DE) and LC/MS system. This powerful method has been applied in toxicology producing a new term "Toxicoproteomics". In this review, recent proteome projects, proteomic technologies, and toxicoproteomics will be discussed.

Structure-based Functional Discovery of Proteins: Structural Proteomics

  • Jung, Jin-Won;Lee, Weon-Tae
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.28-34
    • /
    • 2004
  • The discovery of biochemical and cellular functions of unannotated gene products begins with a database search of proteins with structure/sequence homologues based on known genes. Very recently, a number of frontier groups in structural biology proposed a new paradigm to predict biological functions of an unknown protein on the basis of its three-dimensional structure on a genomic scale. Structural proteomics (genomics), a research area for structure-based functional discovery, aims to complete the protein-folding universe of all gene products in a cell. It would lead us to a complete understanding of a living organism from protein structure. Two major complementary experimental techniques, X-ray crystallography and NMR spectroscopy, combined with recently developed high throughput methods have played a central role in structural proteomics research; however, an integration of these methodologies together with comparative modeling and electron microscopy would speed up the goal for completing a full dictionary of protein folding space in the near future.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

hGM-CSF Production from Transgenic Tobacco

  • Byun, Sang-Yo;Byun, Han-Yeul
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 한국식물생명공학회 2003년도 식물바이오벤처 페스티발
    • /
    • pp.92-92
    • /
    • 2003
  • PDF