• Title/Summary/Keyword: proteomics

검색결과 637건 처리시간 0.027초

Human Proteome Data Analysis Protocol Obtained via the Bacterial Proteome Analysis

  • Kwon, Kyung-Hoon;Park, Gun-Wook;Kim, Jin-Young;Lee, Jeong-Hwa;Kim, Seung-Il;Yoo, Jong-Shin
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.91-95
    • /
    • 2005
  • In the multidimensional protein identification technology of high-throughput proteomics, we use one-dimensional gel electrophoresis and after the separation by two-dimensional liquid chromatography, the sample is analyzed by tandem mass spectrometry. In this study, we have analyzed the Pseudomonas Putida KT2440 protein. From the protein identification, the protein database was combined with its reversed sequence database. From the peptide selection whose error rate is less than 1%, the SEQUEST database search for the tandem mass spectral data identified 2,045 proteins. For each protein, we compared the molecular weight calibrated from 1D-gel band position with the theoretical molecular weight computed from the amino acid sequence, by defining a variable MW$_{corr}$ Since the bacterial proteome is simpler than human proteome considering the complexity and modifications, the proteome analysis result for the Pseudomonas Putida KT2440 could suggest a guideline to build the protocol to analyze human proteome data.

  • PDF

Proteome Analysis of Bacillus subtilis When Overproducing Secretory Protein

  • Jang Mi;Park Byoung-Chul;Lee Do-Hee;Kho Chang-Won;Cho Sa-Yeon;Lee Baek-Rak;Park Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.368-373
    • /
    • 2006
  • Bacillus subtilis and related Bacillus species are frequently used as hosts for the mass production of recombinant proteins. Accordingly, this study examined the cellular response of B. subtilis to the overexpression of a soluble secretory protein. As such, the lichenase derived from B. cereus was overexpressed in B. subtilis, initially localized in the cytoplasm as a mature form and then secreted into the medium. Thereafter, the proteome of B. subtilis was analyzed using 2D electrophoresis and MALDI-TOF mass spectrometry. The expression of several heat-shock proteins, such as dnaK and groEL, was increased under this condition. In addition, manganese superoxide dismutase and NADH dehydrogenase were also upregulated in the lichenase-secreting B. subtilis. Therefore, it was concluded that the transient accumulation of a secreted protein in B. subtilis before secretion acted as a stress on the cell, which in turn induced the expression of various protective proteins.

Identification of Novel Binding Partners for Caspase-6 Using a Proteomic Approach

  • Jung, Ju Yeon;Lee, Su Rim;Kim, Sunhong;Chi, Seung Wook;Bae, Kwang-Hee;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.714-718
    • /
    • 2014
  • Apoptosis is the process of programmed cell death executed by specific proteases, the caspases, which mediate the cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial to understanding cell death and other related biological processes. Although a number of possible roles for caspase-6 have been proposed, the identities and functions of proteins that interact with caspase-6 remain uncertain. In this study, we established a cell line expressing tandem affinity purification (TAP)-tagged caspase- 6 and then used LC-MS/MS proteomic analysis to analyze the caspase-6 interactome. Eight candidate caspase-6-interacting proteins were identified. Of these, five proteins (hnRNP-M, DHX38, ASPP2, MTA2, and UACA) were subsequently examined by co-immunoprecipitation for interactions with caspase-6. Thus, we identified two novel members of the caspase-6 interactome: hnRNP-M and MTA2.

Proteomics of ionic stresses in rice: An overview

  • Kim, Sang-Gon;Wang, Yiming;Huh, Hyun-Hye;Kim, Yong-Chul;Choi, In-Soo;Agrawal, Ganesh Kumar;Rakwal, Randeep;Kang, Kyu-Young;Kim, Sun-Tae
    • Journal of Plant Biotechnology
    • /
    • 제38권2호
    • /
    • pp.130-136
    • /
    • 2011
  • Ions deficiency or excess remains one of the critical ground level environmental problems, affecting crop productivity. In this overview, we will discuss an increased application of proteomics technology in addressing this issue using rice (Oryza sativa L.) as a model crop plant. Proteomics analyses have revealed that rice proteome undergoes changes in the proteins composition and expression in response to several ionic stresses, including mineral nutrients (aluminum, nitrogen, and phosphorous) and heavy metals (arsenic, cadmium, and copper). Developed inventory of responsive proteins and their correlation with changes in physiological symptoms and parameters are a major step forward in: (i) better understanding the underlying mechanisms of ionic stresses-triggered responses in rice; (ii) comparative proteomics studies; and (iii) designing a novel strategy to improve crop plants.

Mouse Transthyretin-related Protein Is a Hydrolase which Degrades 5-Hydroxyisourate, the End Product of the Uricase Reaction

  • Lee, Youra;Park, Byoung Chul;Lee, Do Hee;Bae, Kwang-Hee;Cho, Sayeon;Lee, Choong Hwan;Lee, Jong Suk;Myung, Pyung Keun;Park, Sung Goo
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.141-145
    • /
    • 2006
  • Uric acid is the end product of the purine degradation pathway in humans. It is catabolized to allantoin by urate oxidase or uricase (E.C. 1.7.3.3.) in most vertebrates except humans, some primates, birds, and certain species of reptiles. Here we provide evidence that mouse transthyretin-related protein facilitates the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. Mutagenesis experiments showed that the residues that are absolutely conserved across the TRP family, including His11, Arg51, His102, and the C-terminal Tyr-Arg-Gly-Ser, may constitute the active site of mTRP. Based on these results, we propose that the transthyretin-related proteins present in diverse organisms are not functionally related to transthyretin but actually function as hydroxyisourate hydrolases.

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.