• Title/Summary/Keyword: proteolytic degradation

Search Result 143, Processing Time 0.025 seconds

Activity Screening of the Proteolytic Enzymes Responsible for Post-mortem Degradation of Fish Tissues (어류의 사후 변화에 관여하는 단백질분해효소의 검색)

  • PYEUN Jae-Hyeung;LEE Dong-Soo;KIM Doo-Sang;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.296-308
    • /
    • 1996
  • Proteolytic enzymes responsible for post-mortem degradation of the fish tissues have been studied in regard with screening the proteases distributed in the fish body by reacting with the specific synthesized substrates. Activities of cathepsin L, B, H, G, and D like enzymes were detected in the muscle crude protease from the both kind of fish, dark fleshed fish (anchovy, Engraulis japonica, and gizzard-shad, Clupanodo punctatus) and white fleshed fish (seabass, Lateolabrax japonicus, and sole, Pleuronichthys cornutus), however, those of chymotrypsin, trypsin, pepsin, and peptidase like enzymes were observed 3n the viscera crude pretense from the fish. Proteolytic activities of the muscle crude protease at pH 6.0 were similar to those of the viscera crude protease at pH 8.0, but, those of the viscera crude protease at pH 8.0 were about 2 times higher than those at pH 6.0. The muscle and viscera crude protease from anchovy showed the strongest proteolytic activity among the four fish crude proteases and the proteolytic activity of the viscera crude protease was approximately 100 times higher than that of the muscle crude protease, which suggest that viscera proteases were more contributed on the development of post-mortem changes than muscle proteases. With the degradation patterns on SDS-polyacrylamide gel electrophoresis against yellowtail myofibrillar proteins, the muscle and viscera crude protease of the four fishes were primary responsible for the degradation of myosin heavy chain, and myosin light chain and actin, respectively.

  • PDF

Stability Enhancement of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures

  • Lee, Sang-Yoon;Cho, Jong-Moon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • Proteolytic enzymes existing in plant cell cultured media are the major reason for the loss of secreted human granulocyte-macrophage colony-stimulating factor (hGM-CSF). The addition of pepstatin, aprotinin and PMSF relatively decreased the proteolytic degradation of hGM-CSF in a conditioned medium, but sufficient prevention against the proteolytic activity could not be obtained with chemical protease inhibitors. Gelatin, as a competitive substrate for protease, showed a stabilizing effect in a conditioned medium. Compared to the initial hGM-CSF concentration in a conditioned medium. with 10 g/L of gelatin, 68% of the hGM-CSF remained after 5 days. In a cell culture experiment, 5 g/L of gelatin significantly stimulated the hGM-CSF production and accumulation in culture media, with no growth inhibition. compared to the controls (4.72 $\mu\textrm{g}$/L), the extracellular hGM-CSF level could be increased to 39.78 $\mu\textrm{g}$/L with the addition of 5 g/L of gelatin.

Degradation Characteristics of A Novel Multi-Enzyme-Possessing Bacillus licheniformis TK3-Y Strain for the Treatment of High-Salinity Fish Wastes and Green Seaweeds

  • Kang, Kyeong Hwan;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.4
    • /
    • pp.349-357
    • /
    • 2015
  • To reutilize fisheries waste, we isolated a bacterial strain from a coastal area located in Busan. It was identified as Bacillus licheniformis TK3-Y. Using plate assay and 500-mL flask experiments, we found that the isolate simultaneously possessed cellulolytic, proteolytic, and lipolytic activities with salt tolerance. 10% (v/v) inoculums, were used to examine the biodegradation characteristics of the TK3-Y strain on carboxymethylcellulose, skim milk, and olive oil media. The optimum conditions for pH, temperature, agitation speed, and NaCl concentration on each 1% substrate were 6, $50^{\circ}C$, 180 rpm, and 17.5%, respectively. Under optimal conditions, the TK3-Y strain showed 1.07 U/mL cellulolytic, 1,426 U/mL proteolytic, and 6.45 U/mL lipolytic activities. Each enzyme was stable within a range of 17.5-35% NaCl. Therefore, the salt tolerance ability of strain TK3-Y was superior to other related strains. In degradation of a mixed medium containing all three substrates, both the cellulolytic and proteolytic activities were somewhat lower than those on each single substrate, while the lipolytic activity was somewhat higher. From the above results, the TK3-Y strain appears to be a good candidate for use in the efficient treatment of fisheries waste in which components are not collected separately.

Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy

  • Ji, Chang Hoon;Kwon, Yong Tae
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.441-449
    • /
    • 2017
  • Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagy-lysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.

Regulation of Protein Degradation by Proteasomes in Cancer

  • Jang, Ho Hee
    • Journal of Cancer Prevention
    • /
    • v.23 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • Imbalance of protein homeostasis (proteostasis) is known to cause cellular malfunction, cell death, and diseases. Elaborate regulation of protein synthesis and degradation is one of the important processes in maintaining normal cellular functions. Protein degradation pathways in eukaryotes are largely divided into proteasome-mediated degradation and lysosome-mediated degradation. Proteasome is a multisubunit complex that selectively degrades 80% to 90% of cellular proteins. Proteasome-mediated degradation can be divided into 26S proteasome (20S proteasome + 19S regulatory particle) and free 20S proteasome degradation. In 1980, it was discovered that during ubiquitination process, wherein ubiquitin binds to a substrate protein in an ATP-dependent manner, ubiquitin acts as a degrading signal to degrade the substrate protein via proteasome. Conversely, 20S proteasome degrades the substrate protein without using ATP or ubiquitin because it recognizes the oxidized and structurally modified hydrophobic patch of the substrate protein. To date, most studies have focused on protein degradation via 26S proteasome. This review describes the 26S/20S proteasomal pathway of protein degradation and discusses the potential of proteasome as therapeutic targets for cancer treatment as well as against diseases caused by abnormalities in the proteolytic system.

Tenderization of Bovine Longissimus Dorsi Muscle using Aqueous Extract from Sarcodon aspratus

  • Kim, Ho-Kyoung;Lee, Sang-Hoon;Ryu, Youn-Chul
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.533-540
    • /
    • 2015
  • The aim of this study was to investigate the effects of aqueous extract from Sarcodon aspratus on tenderization of the bovine longissimus dorsi muscles in comparison with commercial proteolytic enzymes. Furthermore, meat quality and muscle protein degradation were examined. We marinated meat with 2% Sarcodon aspratus extract, 2% kiwi extract, and 0.2% papain. Beef chunks (3×3×3 cm3) were marinated with distilled water (control), Sarcodon aspratus extract (T1), kiwi extract (T2) or papain (T3) for 48 h at 4℃. There were no significant differences in muscle pH and lightness between control and treated samples. T1 had the lowest redness (p<0.01), and higher cooking loss and water holding capacity than control and T2 (p<0.05). T1 and T3 exhibited lower shear force values than control (p<0.05). Total protein solubility did not differ significantly between T1 and control, but T1 had less myofibrillar protein solubility than control and T2 (p<0.001). The degradation of myosin heavy chain in T1 and T3 was observed. This degradation of myofibrillar protein suggests that Sarcodon aspratus extract could influence tenderization. These results show that aqueous extract of Sarcodon aspratus extract actively affect the tenderness of the bovine longissimus dorsi muscle.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Complete Genome Sequence of Chryseobacterium mulctrae KACC 21234T : A Potential Proteolytic and Lipolytic Bacteria Isolated from Bovine Raw Milk

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Chryseobacterium mulctrae KACC 21234T is a novel species isolated from raw bovine milk. Psychrotrophic bacteria are considered contaminants and are hypothesized to originate from the environment. In this investigation, the C. mulctrae KACC 21234T genome was determined to be 4,868,651 bp long and assembled into four contigs with a G+C ratio of 33.8%. In silico genomic analyses revealed the presence of genes encoding proteases (endopeptidase Clp, oligopeptidase b, carboxypeptidase) and lipases (phospholipase A(2), phospholipase C, acylglycerol lipase) that can catalyze the degradation of the proteins and lipids in milk, causing its quality to deteriorate. Additionally, antimicrobial resistance and putative bacteriocin genes were detected, potentially intensifying the pathogenicity of the strain. The genomic evidence presented highlights the need for improved screening protocols to minimize the potential contamination of milk by proteolytic and lipolytic psychrotrophic bacteria.

Nucleotide Triphosphates Inhibit the Degradation of Unfolded Proteins by HslV Peptidase

  • Lee, Jung Wook;Park, Eunyong;Bang, Oksun;Eom, Soo-Hyun;Cheong, Gang-Won;Chung, Chin Ha;Seol, Jae Hong
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.252-257
    • /
    • 2007
  • Escherichia coli HslVU is an ATP-dependent protease consisting of two heat shock proteins, the HslU ATPase and HslV peptidase. In the reconstituted enzyme, HslU stimulates the proteolytic activity of HslV by one to two orders of magnitude, while HslV increases the rate of ATP hydrolysis by HslU several-fold. Here we show that HslV alone can efficiently degrade certain unfolded proteins, such as unfolded lactalbumin and lysozyme prepared by complete reduction of disulfide bonds, but not their native forms. Furthermore, HslV alone cleaved a lactalbumin fragment sandwiched by two thioredoxin molecules, indicating that it can hydrolyze the internal peptide bonds of lactalbumin. Surprisingly, ATP inhibited the degradation of unfolded proteins by HslV. This inhibitory effect of ATP was markedly diminished by substitution of the Arg86 residue located in the apical pore of HslV with Gly, suggesting that interaction of ATP with the Arg residue blocks access of unfolded proteins to the proteolytic chamber of HslV. These results suggest that uncomplexed HslV is inactive under normal conditions, but may can degrade unfolded proteins when the ATP level is low, as it is during carbon starvation.

Prenatal effect of pyrantel pamoate on several hematological parameter of offspring in mice

  • Abdulwahab.A.Noorwall;Ghazi M. Al-Hachim;Award -Omar
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.87-91
    • /
    • 1986
  • In attempt to develop a drug delivery system using serum albumin microspheres, bovine serum albumin microspheres containing antitumar agent. Cytarabine, were prepared. The shape, surface characteristics, size distribution, behavior of in vivo distribution, drug release behavior, and degradation of albumin microsphers in animal liver issue homogenate and proteolytic enzyme were investigated. The shape of albumin microspheres was spherical and the surface was smooth and compact. The size distribution of the albumin microspheres was effected by dispertion forces during emulsification and albumin concentration. Distribution of albumin microspheres after imtravenous administration in rabbit was achieved immediately. In vitro, albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin microsphere matrix was so hard that it retained most of cytarabine except initial burst during the first 10 minutes, and the level of drug release during the initial burst was affected by heating temperature, drug/albumin concentration ratio and size distribution. After drug release test, the morphology of albumin microspheres was not changed. Albumin microsphere matrix was degraded by the animal liver issue homogenate and proteolytic enzyme. The degree of degradation was affected by heating temperature.

  • PDF