• Title/Summary/Keyword: proteoglycans

Search Result 57, Processing Time 0.027 seconds

THE EFFECT OF NATURAL EXTRACTS ON CELL GROWTH AND CYTOKINE PRODUCTION (생약 추출물이 세포성장 및 cytokine 생산에 미치는 영향)

  • Ryu, In-Cheol;Son, Seong-Heui;Chung, Chong-Pyoung;Bae, Ki-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.37-47
    • /
    • 1993
  • The native connective tissue attachment of the periodontium is known to be a complex consisting of gingival fibroblasts, periodontal ligament cells, gingival epithelial cells, cementum, alveolar bone and extensive extracellular matrix (collagen, glycoprotein and proteoglycans). The purpose of this study was to evaluate the effects of natural extracts on DNA, collagen and protein synthesis and inhibition of cytokine production in the gingival and periodontal ligament fibroblasts and gingival epithelial cells. Healthy gingival tissue was obtained from orthodontic treatment patients, and gingival epithelial cells, gingival fibroblasts and periodontal ligament cells were isolated and cultured from the samples. After treated with Ginseng protein, Pluronic F-68, Scutellariae Radix, centella asiatica, PDGF, IGF, DNA synthesis, total protein and collagen synthesis, and cytokine production of gingival epithelial cell, gingival fibroblast and periodontal ligamentcells were measured. MTT method for DNA synthesis, Peterkofsky and Dingerman method for total protein and collagen synthesis, and IL-1 ELISA kit for cytokine production were used. The proliferation of epithelial cells was enhanced in Centella asiatica, Ginseng protein, Pluronic F-68 and Scutellariae Radix. The activities of PDL cells were increased in PDGF, IGF, and Pluronic F-68. Higher collagen synthesis was observed in Scutellariae Radix and total protein synthesis was increased in Scutellariae Radix and PDGF. The inhibitory effects on IL-1, IL-6, $TNF-{\alpha}$ were observed in all exrracts.

  • PDF

Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways

  • Yang, Ming;Li, Liang;Heo, Seok-Mo;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.395-401
    • /
    • 2016
  • Endochondral bone formation is the process by which mesenchymal cells condense into chondrocytes, which are ultimately responsible for new bone formation. The processes of chondrogenic differentiation and hypertrophy are critical for bone formation and are therefore highly regulated. The present study was designed to investigate the effect of aloe-emodin on chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Aloe-emodin treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. ATDC5 cells were treated with aloe-emodin and stained with alcian blue. Compared with the control cells, the ATDC5 cells showed more intense alcian blue staining. This finding suggested that aloe-emodin induced the synthesis of matrix proteoglycans and increased the activity of alkaline phosphatase. Aloe-emodin also enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, BSP and RunX2 in a time-dependent manner. Furthermore, examination of the MAPK signaling pathway showed that aloe-emodin increased the activation of extracellular signal-regulated kinase (ERK), but had no effect on p38 and c-jun N-terminal kinase (JNK). Aloe-emodin also enhanced the protein expression of BMP-2 in a time-dependent manner. Thus, these results showed that aloe-emodin exhibited chodromodulating effects via the BMP-2 or ERK signaling pathway. Aloe-emodin may have potential future applications for the treatment of growth disorders.

Concanavalin A Mediated Calcium Changes on Expansion and Hatching of the Mouse Blastocyst (Concanavalin A를 매개로한 세포내 Calcium의 변화와 생쥐 포배의 팽창과 부화)

  • Cheon, Yong Pil
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • Objective: The oligosaccharide moieties of glycoproteins and proteoglycans have a vital function in blastocyst differentiation. Concanavalin (ConA), a lectin, is known to bind on the preimplantation embryos, especially on blastocyst. In this study, we investigated whether ConA can modulate the trophoblast development and about the regulating mediator. Also, we investigated whether expansion is enough for hatching procession of the mouse blastocyst. Method: Embryos were collected at 72 h post hCG injection and chemicals were treated after 24 h (96 hr post hCG injection). ConA or calcium ionophore A23187 were exposed to blastocyst and than analysis the developmental process for 48 hr. Intracellular free-$Ca^{2+}$ concentration in trophectoderm was measured with confocal laser microscope after exposing to ConA or calcium ionophore A23187. ConA-pretreated blastocyst exposed to the calcium ionophore A23187 and then analyzed the developmental process. Otherwise ouabain was treated to the blastocyst to block the $Na^+/K^+$-ATPase activity. Results: In contrast to the control blastocyst, the ConA-exposed blastocysts developed beyond the expansion stage with significantly high rate (90.4%) at 12 h post administration. ConA induced an increase the intracellular $Ca^{2+}$ concentration in trophectoderm. Calcium ionophore A23187 also stimulated expansion of blastocyst. Most of the control blastocysts developed to the hatching stage at 144 h post hCG injection. However, strongly 65% of the ConA-exposed embryos were arrested at expanded stage at same time point. The developmental progression rates to hatching stage of both ConA- and calcium ionophore A23187-expose blastocysts were significantly lower than that of the control. However ConA-pretreated embryos developed to the hatching stage like control embryos. Ouabain showed a tendency to delayed the progress to expansion stage but did not inhibit the development to the hatching stage. Conclusion: ConA-mediated expansion is the result of the increase of intracellular free-calcium in blastocyst stage embryo. It is suspected that expansion of the blasocyst is a essential indirect factor in hatching and the calcium may triggering the cellular mechanisms for the both expansion and hatching progression.

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

The Relation Between Sox9, TGF-${\beta}1$, and Proteoglycan in Human Intervertebral Disc Cells

  • Lee, Yong-Jik;Kong, Min-Ho;Song, Kwan-Young;Lee, Kye-Heui;Heo, Su-Hak
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.3
    • /
    • pp.149-154
    • /
    • 2008
  • Objective: The aim of this study is to elucidate the effects of transforming growth factor-${\beta}$ (TGF-${\beta}$)1 and L-ascorbic acid on proteoglycan synthesis, and the relationship between Sox9, proteoglycan, and TGF-${\beta}1$ in intervertebral disc cells. Methods: Human intervertebral disc tissue was sequentially digested to 0.2% pronase and 0.025% collagenase in DMEM/F-12 media and extracted cells were cultured in $37^{\circ}C$, 5% $CO_2$ incubator. When intervertebral disc cells were cultured with TGF-${\beta}1$ or L-ascorbic acid, the production level of sulfated glycosaminoglycan (sGAG) was estimated by dimethyl methyleneblue (DMMB) assay. The changes of Sox9 mRNA and protein levels via TGF-${\beta}1$ were detected by RT-PCR and Western blot analysis in each. Results: The amount of sGAG was increased with the lapse of time during incubation, and sGAG content of pellet cultured cells was much larger than monolayer culture. When primary cultured intervertebral disc cells in monolayer and pellet cultures were treated by TGF-${\beta}1$ 20 ng, sGAG content of experimental group was increased significantly compared to control group in both cultures. L-Ascorbic acid of serial concentrations (50-300 ug/ml) increased sGAG content of mono layer cultured intervertebral disc cells significantly in statistics. The co-treatment of TGF-${\beta}1$ and L-ascorbic acid increased more sGAG production than respective treatment. After treating with TGF-${\beta}1$, Sox9 mRNA and protein expression rates were significantly increased in disc cells compared with the control group. Conclusion: This study suggests that TGF-${\beta}1$ would increase sulfated glycosaminoglycan (sGAG) and other proteoglycans such as versican by elevating Sox9 mRNA and protein expressions in order.

Role of Matrix Metalloproteinases in Degenerative Lumbar Disc; Molecular and Immunohistochemical Study

  • Ryu, Kyeong-Sik;Cho, Sung-Jin;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.363-368
    • /
    • 2006
  • Objective : Little is known about the comprehensive molecular and biological mechanism on the development of the degeneration of the intervertebral disc. Many kinds of matrix metalloproteinase[MMP] initiate the degradation of the extracellular matrix including several kinds of collagens and proteoglycans. We compared molecular and immunohistochemical features of degenerated intervertebral disc and normal counterparts in order to investigate the role of MMP-1, 2, 3, 9. Methods : We have evaluated MMP-1, 2, 3, 9 expression in 30 surgically resected lumbar disc from degenerative disc disease patients and 5 normal control cases. RT-PCR[reverse transcriptase-polymerase chain reaction] and immunohistochemistry were performed. Results : By RT-PCR, normal tissue samples showed merely scant expression of MMP-1, 2, 3, 9 mRNA, but degenerated disc samples revealed more pronounced expression. mRNA amplifications were detected in 60%, 63.3%, 70%, 53.3% cases By immunohistochemistry, normal tissue samples showed minimal protein expression of MMP-1, 2, 3, 9, but degenerated disc samples revealed more pronounced expression. Protein expressions were detected in 73.3%, 63.3%, 76.7%, 63.3% cases. Both the mRNA amplification and protein overexpression rates were significantly higher in degenerated disc than in the normal tissue. Concordance between both the mRNA amplification and protein expressions of MMP-1, 3, 9 were not observed, but there is well correlation in MMP-2 expression. Conclusion : We concluded that the over-expressions of the MMP-1, 2, 3, 9 may contribute to the development of degeneration of the intervertebral disc.

Analysis of Decorin Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Kim, Min-Goo;Ka, Hak-Hyun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2010
  • Decorin (DCN) is a member of small leucine-rich proteoglycans which are ubiquitous components of the extracellular matrix. It regulates many physiological processes, such as matrix formation, collagen fibrillogenesis, angiogenesis, cancer growth, and cardiovascular diseases. It has been shown that DCN is expressed in the uterus during pregnancy and modulates implantation and decidualization for the establishment and maintenance of pregnancy in mice and humans. Expression of DCN in the uterine endometrium during pregnancy has not been investigated in pigs. Thus, this study investigated expression of DCN in the uterine endometrium during the estrous cycle and pregnancy in pigs. Uterine endometrial tissues were from day (D) 12 and 15 of the estrous cycle and D12, D15, D30, D60, D90, and D114 of pregnancy. Northern blot and real-time RT-PCR analyses showed that expression of DCN mRNA was detected throughout the estrous cycle and pregnancy with the highest levels during mid pregnancy. In situ hybridization analysis showed that DCN mRNA was localized to both luminal and glandular epithelia during the estrous cycle and pregnancy and also to chorionic membrane during mid pregnancy in pigs. To determine whether endometrial expression of DCN was affected by the somatic cell nuclear transfer (SCNT) procedure, DCN mRNA levels in the uterine endometrium from gilts with SCNT embryos on D30 of pregnancy were compared with those from gilts with normal embryos using real-time RT-PCR analysis. The result showed that DCN mRNA levels in the uterine endometrium were not significantly different between gilts with normal embryos and SCNT embryos. These results suggest that DCN may play an important role for endometrial tissue remodeling during mid pregnancy, and DCN expression is not affected by the SCNT procedure at the early stage of pregnancy in pigs.

Marine Algae and Their Potential Application as Antimicrobial Agents

  • Charway, Grace N.A.;Yenumula, Padmini;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, bryozoans, mollusk, tunicates and echinoderms, which are known to produce a wide variety of bioactive secondary metabolites with pharmacological properties. Many new therapeutic drugs have emerged from marine invertebrates, although the large algal community is yet to be explored. The bioactivity possessing secondary metabolites of marine algae include polyphenols, phlorotannins, alkaloids, halogenated compounds, sulfated polysaccharides, agar, carrageenan, proteoglycans, alginate, laminaran, rhamnan sulfate, galactosylglycerol, and fucoidan. These metabolites have been found to have great antimicrobial activities against many human aliments. Studies show that the algal community represents about 9% of biomedical compounds obtained from the sea. This review looks at the evolution of drugs from the ocean, with a special emphasis on the antimicrobial activities of marine algae.

Isolation and Characterization of Proteoglycan Derived From Human Placenta and its Biological Activities

  • Lee, Kyung-Bok;Kim, Jong-Sig;Yoo, Yung-Choon;Kwak, Sang-Tae;Song, Kyung-Sik;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.182-186
    • /
    • 2000
  • Chondroitin sulfates proteoglycans were isolated from human placenta. For the identification of enzymatic digestion products of isolated proteoglycan, strong anion exchange-high performance liquid chromatography (SAX-HPLC) was performed. By the action of chondroitin ABC and chondroitin B lyase, three unsaturated disaccharides 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-D-galactose ($\delta$Di-OS), 2-acetamide-2-deoxy-3-O-($\beta$-D-gluco-4-enepyranosyluronic acid)-6-O-su lfo-D-galactose ($\delta$Di-6S) and 2-acetamide-2-deoxy-3-O-($\beta$-D-gl uco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose ($\delta$Di-4S) were produced from the human placenta proteoglycan. The anticoagulant activity of chondroitin sulfate proteoglycan was evaluated by activated partial thromboplastin time (aPTT) assay and thrombin time (TT) assay. The clotting times of aPTT and TT were increased from 72 to 144 sec and 19 to 27 sec, respectively. The Immune-modulating activity of chondroitin sulfate proteoglycan was examined by cell proliferation assay and these results suggest that it may play a role in suppression of the function of immune-related cells.

  • PDF

Effects of Deer Antler Water Extract(Pilose Antler of Cervus Korean TEMMINCK Var. Mantchuricus Sinhoe) on Chondrocytes

  • Kim, Moo-Jin;Lee, Seung-Deok;Kim, Kyung-Ho;Byun, Hyuk;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • Objectives : Deer antler Water Extract(DAE), prepared from the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong), a traditional immuno-suppressive and immuno-activating Korean herbal-acupuncture, is thought to play an important role in human bone remodeling. Methods : To determine whether DAE can induce the differentiation of resting zone chondrocytes(RC) or not, confluent cell cultures were pretreated for 24, 36, 48, 72, and 120hrs with DAE. At the end of pretreatment, the media were replaced with new media containing $10^{-10}{\sim}10^{-8}M\;1,25-(OH)_2D_3$ and the cells incubated for an additional 24hrs. Results : This second treatment was chosen because prior studies had shown that only the more mature growth zone chondrocytes(GC) respond to this vitamin $D_3$ metabolite. The effect of DAE pretreatment on cell maturation was confirmed by measuring alkaline phosphatase (ALPase)-specific activity. Changes in matrix protein synthesis were examined by measuring collagen synthesis, as well as $^{35}SO_4$ incorporation into proteoglycans. When RC cells were pretreated for 120h with DAE, treatment with $1,25-(OH)_2D_3$ caused a dose-dependent increase in ALPase-specific activity and collagen synthesis, however, the proteoglycan production was not affected. RC cells pretreated with $1,25-(OH)_2D_3$ responded like RC cells that had not received any pretreatment. Conclusion : These results indicate that DAE directly regulates the maturation of RC chondrocytes into GC chondrocytes. Therefore it was indicated that DAE may play a significant role in regulating chondrocyte maturation during endochondral ossification.

  • PDF