• Title/Summary/Keyword: proteins of erythrocyte membrane

Search Result 11, Processing Time 0.02 seconds

Electrophoretic analysis of the major proteins of ruminant erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (반추동물 적혈구막 단백의 전기영동법에 의한 분석 -낮은 적혈구침강속도와의 관계-)

  • Lee, Bang-whan;Bahk, Young-woo
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.445-455
    • /
    • 1989
  • The proteins of the ruminant erythrocyte membranes were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow erythrocyte sedimentation rate(ESR) of the ruminants were investigated by treating the erythrocytes with proteinases such as trypsin, chymotrypsin and pronase, and glycosidases such as neuraminidase and galactosidase. Protein content in the erythrocyte membrane was $2.85{\pm}0.28$ in human, $3.60{\pm}0.41$ in Korean cattle, $3.71{\pm}0.36$ in Holstein, $4.13{\pm}0.83$ in Korean native goat and $3.94{\pm}0.56mg/ml$ in sheep, showing higher in ruminant animals than in human(p<0.01). Although the general protein profiles of the ruminant erythrocyte membranes were almost similar to that of human, all the ruminant erythrocyte membranes showed one additional protein band, called band-Q in the previous report on proteins of bovine erythrocyte membrane, which migrated electrophoretically to the mid position between band-2 and band-3 in human erythrocyte membranes. The glycoprotein profiles of ruminant erythrocyte membranes revealed by periodic acid Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycogrotein) present in human erythrocyte membranes were almost absent from the ruminant animals. Instead, a strong PAS-positive band near the origin of the electrophorograms, which was named as PAS-B in the previous report on proteins of bovine erythrocyte membranes, was shown in the ruminant animals except sheep. In addition, the erythrocyte membranes of Korean native goat and sheep showed a moderate PAS-negative band near the tracking dye of the electrophorograms, which was named as PAS-G in this study. In the erythrocyte treated with the enzymes, the migration of each protein fracture of erythrocyte membranes in response to each enzyme was diverse according to different species or breed of ruminant animals. Among others, band-Q present in ruminants was slightly or moderately decreased by trypsin-, chymotrypsin-, and pronase- treatments of the erythrocytes, but not only in sheep. It was particularly noticeable that PAS-B, a fraction of glycoprotein, present in ruminants except sheep, was better digested by proteinases than by glycosidases, showing remarkable increase(p<0.01) of the ESR in accord with complete digestion(disappearance) of the PAS-B band by pronase, trypsin or chymotrypsin treatment of erythrocytes. In sheep, there was almost no any response to the various enzymes in general protein and glycoprotein profiles of the erythrocyte membranes except PAS-G, which was markedly decreased by pronase treatment of the erythrocytes. Nevertheless, the ESRs were accelerated in erythrocytes treated with pronase, trypsin, chymotrypsin and neuraminidase. Erythrocyte osmotic fragility was increased in erythrocytes treated with only pronase among five enzymes in all the human and ruminant animals used in this study.

  • PDF

Electrophoretic analysis of the major proteins of race horse erythrocyte membrane: Their relation to fast erythrocyte sedimentation rate (경주 적혈구막 단백의 전기영동법에 의한 분석 -빠른 적혈구 침강 속도와의 관계-)

  • Bahk, Yeong-woo;Lee, Si-yeong
    • Korean Journal of Veterinary Research
    • /
    • v.31 no.3
    • /
    • pp.259-264
    • /
    • 1991
  • The proteins of the race horse erythrocyte membrane were analysed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate(SDS-PAGE), and their relations to the fast erythrocyte sedimentation rate(ESR) of the race horse were investigated. The erythrocyte sedimentation rate of race horse were very fast compared with the human one(33 times <$90^{\circ}-plastic-ESR/30m$> and 25 times <$90^{\circ}-micro-ESR/30m$> as fast as the human one) are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse (34.7%) than in human (25.3%). The glycoprotein profiles of the race horse erythrocyte membranes revealed by periodic acid Schiff's(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte memo brane were almost absent from the Holstein and race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. Instead, the bovine erythrocyte membranes showed a strong PAS-B near the origin of the electrophorograms and the race horse erythrocyte membranes showed a strong PAS-negative band near the end of the electrophorograms, which is named as PAS-E in this study. These results suggest that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF

Electrophoretic analysis of the major proteins of bovine erythrocyte membrane: Their relation to slow erythrocyte sedimentation rate (우(牛) 적혈구막(赤血球膜) 단백(蛋白)의 전기영동법(電氣泳動法에) 의한 분석(分析) -낮은 적혈구(赤血球) 심강속도(沈降速度)와의 관계(關係)-)

  • Bahk, Young-woo;Lee, Bang-whan
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • The proteins of the bovine erythrocyte membrane were analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and their relations to the slow sedimentation rate of bovine erythrocytes were investigated by treating the erythrocytes with trypsin. The erythrocyte sedimentation rates of bovine erythrocytes from Holstein and Korean native cattle were very slow compared with the human one (1/7 as slow as the human one) as reported previously. However, when human and Holstein erythrocytes were treated with trypsin (0.2 and 0.5 mg/ml) for 1 hour at ${37^{\circ}C}$, their sedimentation rates were markedly accelerated while the sedimentation rate of Korean native cattle's erythrocytes were not affected. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. Treatment of Holstein and human erythrocytes with trypsin caused a decrease or disapperance of the band Q from the erythrocyte membrane. Although the band Q in Korean native cattle's erythroyte membrane was decreased by trypsin treatment of the erythrocytes, the magnitude of the decrement was not so pronounced as in the case of human and Holstein erythrocytes. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff stain showed a marked difference from that of human. The PAS-1 (glycophorin) and PAS-2 (sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes. Instead, the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electrophorograms, which is named as PAS-B in this study. The PAS-B band was disappered completely by the trypsin treatment of Holstein erythrocytes whereas the PAS-B band in Korean native cattle's erythrocyte membrane still remained after the trypsin treatment. The trypsin treatment of Korean native cattle's erythrocytes, however, led to the appearance of small molecular weight peptides, indicating that the high molecular weight glycoproteins were degraded by trypsin as in human and Holstein ones. These results suggest that the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes.

  • PDF

Electrophoretic analysis of the major protein of erythrocyte membrane in man, bovine, horse, and dog: their relation to erythrocyte sedimentation rate (사람, 소, 말, 개의 적혈구막 단백의 전기 영동법에 의한 분석 - 적혈구 침강 속도와의 관계 -)

  • Bahk, Yeong-woo
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • The protein of the bovine, horse and dog erythrocyte membrane were analyzed by polyacrylamide gel eletrophoresis in sodium dodecyl sulfate and their relation to the sedimentation rate of animal erythrocytes were investigated by treating the erythrocytes with proteinases such as trypsin and chymotrypsin. Protein content in erythrocyte membrane was in human, in Jindo dog, in cattle and in horse, showing similar in among. The erythrocyte sedimentation rates bovine erythrocytes from Hostein and Korean native cattle were very slow compared with the human one(1/7 as slow as the human one) as reported previously. Although the general protein profiles of the bovine erythrocyte membranes were almost similar to that of human, bovine erythrocyte membranes showed one additional protein band, called band Q in this study, which migrated electrophoretically to the mid-position between band 2 and band 3 in human erythrocyte membranes. The erythrocyte sedimentation of race horse were very fast compared with the human one are reported previously. Although the general protein profiles of the race horse erythrocyte membranes were almost similar to that of human, band 3 content was showing higher in race horse(34.7%) than in human(25.3%). The general protein profile of the Jindo dog erythrocyte membrane was almost similar to the human patterns, Jindo dog erythrocyte membranes showed one absent protein band. It was band 7. The glycoprotein profiles of the bovine erythrocyte membranes revealed by periodic acid-Schiff(PAS) stain showed a marked difference from that of human. The PAS-1(glycophorin) and PAS-2(sialoglycoprotein) present in human erythrocyte membrane were almost absent from the bovine erythrocyte membranes showed a strong PAS-positive band near the origin of the electraphorograms, which is named as PAS-B in this study. The PAS-1 and PAS-2 present in human erythrocyte membrane were almost absent from race horse erythrocyte membranes, but PAS-2 was more in only race horse from that of human. The PAS-1 and PAS-2 were absolutely absent from the Jindo dog erythrocyte membrane. These results suggest the slow sedimentation rate of bovine erythrocytes is due in part to the presence of band Q protein fraction and PAS-B glycoprotein in the bovine erythrocytes, and that the fast sedimentation rate of race horse erythrocyte is due in part to the presence of more band 3 protein fraction and PAS-E glycoproteins in the race horse erythrocytes.

  • PDF

Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

  • Tian, Yongmei;Cai, Mingjun;Xu, Haijiao;Ding, Bohua;Hao, Xian;Jiang, Junguang;Sun, Yingchun;Wang, Hongda
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.592-597
    • /
    • 2014
  • The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

Sialoglycoproteins of Mammalian Erythrocyte Membranes: A Comparative Study

  • Sharma, Savita;Gokhale, Sadashiv M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1666-1673
    • /
    • 2011
  • The presence of sialoglycoproteins (SGPs) in the membranes from goat (Capra aegagrus hircus), buffalo (Bubalus bubalis bubalis) and pig (Sus scrofa domestica) erythrocytes was investigated by partial purification with a chloroform-methanol extraction method followed by Sodium dodecyl sulphate - Polyacrylamide gel electrophoresis in comparison to human (Homo sapiens) erythrocytes. The results show that mammalian erythrocytes possess clear differences in the SGPs numbers and molecular weights although all animals studied in this experiment are from the same class i.e. mammalia. The SGPs number in human, goat, buffalo and pig are four (PAS-1 to PAS-4), ten (PAS-GI to PAS-GX), seven (PAS-BI to PAS-BVII) and four (PAS-PI to PAS-IV) respectively as indicated by staining the polyacrylamide gel with sialoglycoprotein-specific Periodic acid-Schiff's (PAS) stain. The new SGPs could be observed only after the partial purification of membrane fractions named as PAS-HI with molecular weight (Mr) 190 kDa and PAS-HII 150 kDa in human, PAS-BIA in buffalo and PAS-PIA and PAS-PIVA in pig. The gels were also stained with Coomassie brilliant blue (CBB) and Silver stain to check the contamination of other membrane proteins in the purified fractions. The quantitative distribution of SGPs was also determined by densitometry. Present study indicates that there are some basic differences in mammalian erythrocyte membrane SGPs, especially with respect to their number and molecular weights indicating major structural variations.

Influence of Total Saponin from Korean Red Ginseng on Structural Changes in Phospholipid Membranes and Ghost Erythrocytes (고려홍삼의 총사포닌에 의한 인지질막과 적혈구막의 구조적 변화)

  • Kim, Yuri-A.;Vlasimir, R.Akoev;Tarahovsky, Yuri-S.;Ruslan, Elemesov;Park, Kyeong-Mee;Song, Yong-Bum;Rhee, Man-Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 1995
  • Total saponin from Korean red ginseng changed thermodynamic parameters of membranes from dipalmitoylphosphatidylcholine (DPPC) and ghost erythrocytes of human. In liposomes from DPPC, temperature of the main transition (Lb'-La) in liquid-crystalline phase increases by 0.2$^{\circ}C$ in average, but enthalpy does not change. Total saponin at a concentration of smaller than $10^5$% "stabilizes" the timid bilayers. At larger than 0.07 of saponin/DPPC ratio, saponin leads to an exclusion of the bound lipid molecules from the main phase transition into lamella liquid crystalline La-phase. Total saponin influences specifically all erythrocyte membrane transitions in a concentration-dependent manner, i.e. on the structures of all the main membrane skeleton proteins. A high structural specificity of saponin with membrane proteins, could be a base of specificity of physiological response of not only erythrocytes, but also other cells.her cells.

  • PDF

Purification of Band 3 from the Human Erythrocyte Membrane and its Incorporation into Liposome (사람 적혈구막 Band 3의 정제 및 Liposome으로의 도입)

  • Kim, Jae-Ryong;Kim, Jung-Hye;Lee, Ki-Yung
    • Journal of Yeungnam Medical Science
    • /
    • v.3 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Band 3, the predominent 95,000 dalton anion transport protein, is the major intrinsic glycoprotein of the human erythrocyte membrane. This anion carrier exists as a dimer and binds the cytoskeletons such as spectrin, ankyrin and actin. And the liposomes are vesicular structures which form spontaneouly upon hydration of phospholipids. These artificial lipid vesicles have been investigated as model of the biological membranes and as a mean of improving the delivery of nucleic acids, drugs, proteins and biological substances to specific target tissues and cells. In this study, we were purified Band 3 from the human erythrocyte membrane(ghost) was prepared by hemolysis of intact human erythrocyte with weak alkali-hypotonic solution. Band 6 was removed from ghost by extracting with solution of an ionic strength of 0.15. Band 3 and Band 4 were solubilized selectively by extracting Band 6-depleted ghosts with Triton X-100 under nondenaturing conditions. Band 3 was then purified from Triton X-100 extract treated with p-chloromercuribenzoate by sucrose density gradient ultracentrifugation. This purified Band 3 was incorporated into liposomes prepared by reverse-phase evaporation. Phosphatidyl L-serine and cholesterol(1 : 1 molar ratio) were dissolved in chloroform and then chloroform was removed by rotatory evaporation under reduced pressure. Band 3 solution without Triton X-100 was introduced into a mixture of lipids and diethylether. Diethylether was subsequently removed by evaporation. This purified Band 3 and its incorporation into liposomes were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  • PDF

Effect of $PGE_2$ and $PGF_{2{\alpha}}$ on the Osmotic Fragility and Membrane $Ca^{++}$ Binding in Human Erythrocytes ($PGE_2$$PGF_{2{\alpha}}$가 삼투성 용혈 및 적혈구막 $Ca^{++}$결합에 미치는 영향)

  • Yeoun, Dong-Soo;Kang, Doo-Hee
    • The Korean Journal of Physiology
    • /
    • v.17 no.2
    • /
    • pp.135-142
    • /
    • 1983
  • $PGE_2$ and $PGF_{2{\alpha}}$ are known to act similarly in a number of animal tissues. They both facilitate regression of corpus luteum(Poyser, 1972; Fuch et al, 1974; Coudert et at, 1974) and stimulate contraction of uterine muscle (Laudanski et al, 1977; Porter et al, 1979; Hollingsworth et al, 1980). It is, however, not known whether these two prostaglandins exert similar actions in osmotic fragility of erythrocytes (Rasmussen et al, 1975) and $PGF_{2{\alpha}}$ alters conformation of membrane proteins (Meyers aud Swislocki, 1974). The former effect may not be mediated through changes in c- AMP concentration in the cell, since the adenylate cyclase activity in human erythrocyte is extremely low (Rodan et al, 1976; Sutherland et al, 1962) and the latter effect implies that physical state (or fluidity) of the membrane is altered by $PGF_{2{\alpha}}$. The present study was undertaken to elucidate mechanisms of action of $PGE_2$ and $PGF_{2{\alpha}}$ on the human erythocyte membrane by examining their effects on osmotic fragility and $Ca^{++}$ binding to the membrane fragments. The results are summarized as follows: 1) $PGE_2$ and $PGF_{2{\alpha}}$ increased osmotic fragility at concentrations above $10^{11}\;M$, the effect being similar for both hormones. The concentration of NaCl for 100% hemolysis was $1/16{\sim}1/17\;M$ in the presence of $10^{11}\;M\;PGE_2$ or $PGF_{2{\alpha}}$ and 1/18 M in the absence of the hormone (control). 2) When erythrocytes were suspended in 1/15 M NaCl solution, $44.2{\pm}4.3%$ of cells were hemolyzed. Addition of $10^{12}\;M\;PGE_2$ or $PGF_{2{\alpha}}$ did not increase hemolysis. When the concentration of the hormones was increased to $10^{11}\;M$, however the degree of hemolysis increased markealy to about 80%. No further increase in hemolysis was observed at concentration of the hormones above $10^{11}\;M$. 3) The additional hemolysis due to $10^{11}\;M\;PGE_2$ and $PGF_{2{\alpha}}$ appeared to he identical regardless of absence or presence of $Ca^{++}\;(0.5{\sim}10\;mM)$ in the suspending medium. 4) In the absence of prostaglandin, the binding of $Ca^{++}$ to the erythrocyte membrane increased curvilinearly as the $Ca^{++}$ concentration increased up to 5 mM above which it leveled off. A similar dependence of $Ca^{++}$ binding on the $Ca^{++}$ concentration was observed in the presence of $10^{11}\;M\;PGE_2$ or $PGF_{2{\alpha}}$, however, the amount of $Ca^{++}$ bound at a given $Ca^{++}$ concentration was significantly higher than in the absence of the hormones. 5) As in the hemolysis, $PGE_2$ and $PGF_{2{\alpha}}$ did not affect the $Ca^{++}$ binding at a concentration of $10^{12}\;M$, but increased it by about 100% at concentration above $10^{11}\;M$. These result indicate that both tile osmotic fragility of erythrocyte and the $Ca^{++}$ binding to the erythrocyte membrane are similarly enhanced by $PGE_2$ and $PGF_{2{\alpha}}$, but these two effects are not causally related. It is, therefore, concluded that the prostaglandin-induced hemolysis is not directly associated with alterations of the $Ca^{++}$ content in the membrane.

  • PDF

Protective Effects of Auraptene against Free Radical-Induced Erythrocytes Damage

  • Khadijeh Jamialahmadi;Amir Hossein Amiri;Fatemeh Zahedipour;Fahimeh Faraji;Gholamreza Karimi
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.344-353
    • /
    • 2022
  • Objectives: Auraptene is the most abundant natural prenyloxycoumarin. Recent studies have shown that it has multiple biological and therapeutic properties, including antioxidant properties. Erythrocytes are constantly subjected to oxidative damage that can affect proteins and lipids within the erythrocyte membrane and lead to some hemoglobinopathies. Due to the lack of sufficient information about the antioxidant effects of auraptene on erythrocytes, this study intended to evaluate the potential of this compound in protecting radical-induced erythrocytes damages. Methods: The antioxidant activity of auraptene was measured based on DPPH and FRAP assays. Notably, oxidative hemolysis of human erythrocytes was used as a model to study the ability of auraptene to protect biological membranes from free radical-induced damage. Also, the effects of auraptene in different concentrations (25-400 µM) on AAPH-induced lipid/protein peroxidation, glutathione (GSH) content and morphological changes of erythrocytes were determined. Results: Oxidative hemolysis and lipid/protein peroxidation of erythrocytes were significantly suppressed by auraptene in a time and concentration-dependent manner. Auraptene prevented the depletion of the cytosolic antioxidant GSH in erythrocytes. Furthermore, it inhibited lipid and protein peroxidation in a time and concentration-dependent manner. Likewise, FESEM results demonstrated that auraptene reduced AAPH-induced morphological changes in erythrocytes. Conclusion: Auraptene efficiently protects human erythrocytes against free radicals. Therefore, it can be a potent candidate for treating oxidative stress-related diseases.