References
- Adams, P.G., Cadby, A.J., Robinson, B., Tsukatani, Y., Tank, M., Wen, J., Blankenship, R.E., Bryant, D.A., and Hunter, C.N. (2013). Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochim. Biophys. Acta 1827, 1235-1244. https://doi.org/10.1016/j.bbabio.2013.07.004
- Aldrich, K.J., Saunders, D.K., Sievert, L.M., and Sievert, G. (2006). Comparison of erythrocyte osmotic fragility among amphibians, reptiles, birds and mammals. Transac. KS Acad. Sci. 109, 149-158. https://doi.org/10.1660/0022-8443(2006)109[149:COEOFA]2.0.CO;2
- Bandorowicz-Pikula, J., Wos, M., and Pikula, S. (2012). Participation of annexins in signal transduction, regulation of plasma membrane structure and membrane repair mechanisms. Postepy. Biochem. 58, 135-148.
- Bhattacharyya, K., Guha, T., Bhar, R., Ganesan, V., Khan, M., and Brahmachary, R.L. (2004). Atomic force microscopic studies on erythrocytes from an evolutionary perspective. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 279, 671-675.
- Cai, M., Zhao, W., Shang, X., Jiang, J., Ji, H., Tang, Z., and Wang, H. (2012). Direct evidence of lipid rafts by in situ atomic force microscopy. Small 8, 1243-1250. https://doi.org/10.1002/smll.201102183
- Chiari, Y., Cahais, V., Galtier, N., and Delsuc, F. (2012). Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65. https://doi.org/10.1186/1741-7007-10-65
- Coiro, J.R., Brunner, A., Mitsutani, C.Y., Weisz, V.M., and Fiori, A.M. (1978). The marginal band and its role in the ellipsoidal shape of Geochelone carbonaria erythrocytes. Arch. Anat. Microsc. Morphol. Exp. 67, 133-143.
- Drew, C., Ball, V., Robinson, H., Ellory, J.C., and Gibson, J.S. (2004). Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry 62, 153-158. https://doi.org/10.1016/j.bioelechem.2003.07.003
- Euteneuer, U., Ris, H., and Borisy, G.G. (1985). Polarity of marginal-band microtubules in vertebrate erythrocytes. Eur. J. Cell. Biol. 37, 149-155.
- Ferlazzo, A.M., Bruschetta, G., Di Pietro, P., Medica, P., Notti, A., and Rotondo, E. (2011). Phospholipid composition of plasma and erythrocyte membranes in animal species by P-31 NMR. Vet. Res. Commun. 35, 521-530. https://doi.org/10.1007/s11259-011-9496-4
- Gao, J., Li, J., Feng, C., Hu, Z., Liu, W., Liang, S., and Yin, D. (2013). Isolation technique and proteomic analysis of the erythrocyte ghosts of red-eared turtle (Trachemys scripta). Electrophoresis 34, 215-223. https://doi.org/10.1002/elps.201200243
- Gupta, V.K., Neeves, K.B., and Eggleton, C.D. (2012). Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells. Biophys. J. 103, 137-145. https://doi.org/10.1016/j.bpj.2012.05.044
- Hagerstrand, H., Danieluk, M., Bobrowska-Hagerstrand, M., Holmstrom, T., Kralj-Iglic, V., Lindqvist, C., and Nikinmaa, M. (1999). The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization. Mol. Membr. Biol. 16, 195-204. https://doi.org/10.1080/096876899294661
- Hao, X., Zhu, N., Gschneidtner, T., Jonsson, E.Ö., Zhang, J., Moth-Poulsen, K., Wang, H., Thygesen, K.S., Jacobsen, K.W., Ulstrup, J., et al. (2013). Direct measurement and modulation of singlemolecule coordinative bonding forces in a transition metal complex. Nat. Commun. 4, 2121.
- Hartman, F.A., and Lessler, M.A. (1964). Erythrocyte measurements in fishes amphibia, and reptiles. Biol. Bull. 126, 83-88. https://doi.org/10.2307/1539418
- Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K., and Schindler, H. (1996). Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477-3481. https://doi.org/10.1073/pnas.93.8.3477
-
Jiang, J., Hao, X., Cai, M., Shan, Y., Shang, X., Tang, Z., and Wang, H. (2009). Localization of
$Na^+$ -$K^+$ ATPases in quasi-native cell membranes. Nano Lett. 9, 4489-4493. https://doi.org/10.1021/nl902803m - Keren, K. (2011). Cell motility: the integrating role of the plasma membrane. Eur. Biophys. J. 40, 1013-1027. https://doi.org/10.1007/s00249-011-0741-0
- Kong, F., Li, Z., Parks, W.M., Dumbauld, D.W., Garcia, A.J., Mould, A.P., Humphries, M.J., and Zhu, C. (2013). Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49, 1060-1068. https://doi.org/10.1016/j.molcel.2013.01.015
- Medalsy, I., Hensen, U., and Muller, D.J. (2011). Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. In. Ed. 50, 12103-12108. https://doi.org/10.1002/anie.201103991
- Morgan, D.A., Class, R., Violetta, G., and Soslau, G. (2009). Cytokine mediated proliferation of cultured sea turtle blood cells: Morphologic and functional comparison to human blood cells. Tissue Cell 41, 299-309. https://doi.org/10.1016/j.tice.2008.12.004
- Muller, D.J. (2008). AFM: a nanotool in membrane biology. Biochemistry 47, 7986-7998. https://doi.org/10.1021/bi800753x
- Sage, H.J., and Vazquez, J.J. (1967). Studies on a hemagglutinin from the mushroom Agaricus campestris. J. Biol. Chem. 242, 120-125.
- Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
- Singer, S.J., and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell-membranes. Science 175, 720-731. https://doi.org/10.1126/science.175.4023.720
- Snyder, G.K., and Sheafor, B.A. (1999). Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. Amer. Zool. 39, 189-198. https://doi.org/10.1093/icb/39.2.189
- Stabenau, E.K., Vanoye, C.G., and Heming, T.A. (1991). Characteristics of the anion transport system in sea turtle erythrocytes. Am. J. Phys. 261, 1218-1225.
- Sumino, A., Sumikama, T., Iwamoto, M., Dewa, T., and Oiki, S. (2013). The open gate structure of the membrane-embedded kcsa potassium channel viewed from the cytoplasmic side. Sci. Rep. 3, 1063. https://doi.org/10.1038/srep01063
- Suzuki, Y., Sakai, N., Yoshida, A., Uekusa, Y., Yagi, A., Imaoka, Y., Ito, S., Karaki, K., and Takeyasu, K. (2013). High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci. Rep. 3, 2131. https://doi.org/10.1038/srep02131
- Tian, Y., Li, J., Cai, M., Zhao, W., Xu, H., Liu, Y., and Wang, H. (2013). High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv. 3, 708-712. https://doi.org/10.1039/C2RA22166G
- Tian, Y., Cai, M., Zhao, W., Wang, S., Qin, Q., and Wang, H. (2014a). The asymmetric membrane structure of erythrocytes from Crucian carp studied by atomic force microscopy. Chin. Sci. Bull. 59, 2582-2587. https://doi.org/10.1007/s11434-014-0375-6
- Tian, Y., Cai, M., Xu, H., and Wang, H. (2014b). Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy. Anal. Methods [in press].
- Vereb, G., Szollosi, J., Matko, J., Nagy, P., Farkas, T., Vigh, L., Matyus, L., Waldmann, T. A., and Damjanovich, S. (2003). Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Nat.l Acad. Sci. USA 100, 8053-8058. https://doi.org/10.1073/pnas.1332550100
- Wang, H., Hao, X., Shan, Y., Jiang, J., Cai, M., and Shang, X. (2010). Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy 110, 305-312. https://doi.org/10.1016/j.ultramic.2009.12.014
- Werneburg, I., and Sanchez-Villagra, M.R. (2009). Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol. Biol. 9, 82. https://doi.org/10.1186/1471-2148-9-82
-
Wu, J., Gao, J., Qi, M., Wang, J., Cai, M., Liu, S., Hao, X., Jiang, J., and Wang, H. (2013a). High-efficiency localization of
$Na^+$ -$K^+$ AT Pases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. Nanoscale 5, 11582-11586. https://doi.org/10.1039/c3nr03665k - Wu, J., Hao, X., Wang, Z., Cai, M., and Wang, H. (2013b). Tracking hepatitis B virus-like vesicles in living cells. Chem. Rapid Commun. 1, 27-30.
- Xu, H., Su, W., Cai, M., Jiang, J., Zeng, X., and Wang, H. (2013). The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope. PLoS One 8, e61596. https://doi.org/10.1371/journal.pone.0061596
- Zhao, W., Tian, Y., Cai, M., Wang, F., Wu, J., Gao, J., Liu, S., Jiang, J., Jiang, S., and Wang, H. (2014). Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS One 9, e91595. https://doi.org/10.1371/journal.pone.0091595
- Ziegler, U., Vinckier, A., Kernen, P., Zeisel, D., Biber, J., Semenza, G., Murer, H., and Groscurth, P. (1998). Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett. 436, 179-184. https://doi.org/10.1016/S0014-5793(98)01118-1
Cited by
- The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy vol.44, pp.11, 2015, https://doi.org/10.1039/C4CS00508B
- Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy vol.74, pp.3, 2016, https://doi.org/10.1007/s12013-016-0755-4
- Enantiomeric Effect of d-Amino Acid Substitution on the Mechanism of Action of α-Helical Membrane-Active Peptides vol.19, pp.1, 2017, https://doi.org/10.3390/ijms19010067
- Structural and functional studies of erythrocyte membrane-skeleton by single-cell and single-molecule techniques vol.12, pp.01, 2019, https://doi.org/10.1142/S1793545818300045