DOI QR코드

DOI QR Code

Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

  • Tian, Yongmei (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Cai, Mingjun (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Xu, Haijiao (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Ding, Bohua (School of physics, Northeast Normal University) ;
  • Hao, Xian (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Jiang, Junguang (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) ;
  • Sun, Yingchun (School of physics, Northeast Normal University) ;
  • Wang, Hongda (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences)
  • Received : 2014.05.07
  • Accepted : 2014.07.07
  • Published : 2014.08.31

Abstract

The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

Keywords

References

  1. Adams, P.G., Cadby, A.J., Robinson, B., Tsukatani, Y., Tank, M., Wen, J., Blankenship, R.E., Bryant, D.A., and Hunter, C.N. (2013). Comparison of the physical characteristics of chlorosomes from three different phyla of green phototrophic bacteria. Biochim. Biophys. Acta 1827, 1235-1244. https://doi.org/10.1016/j.bbabio.2013.07.004
  2. Aldrich, K.J., Saunders, D.K., Sievert, L.M., and Sievert, G. (2006). Comparison of erythrocyte osmotic fragility among amphibians, reptiles, birds and mammals. Transac. KS Acad. Sci. 109, 149-158. https://doi.org/10.1660/0022-8443(2006)109[149:COEOFA]2.0.CO;2
  3. Bandorowicz-Pikula, J., Wos, M., and Pikula, S. (2012). Participation of annexins in signal transduction, regulation of plasma membrane structure and membrane repair mechanisms. Postepy. Biochem. 58, 135-148.
  4. Bhattacharyya, K., Guha, T., Bhar, R., Ganesan, V., Khan, M., and Brahmachary, R.L. (2004). Atomic force microscopic studies on erythrocytes from an evolutionary perspective. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 279, 671-675.
  5. Cai, M., Zhao, W., Shang, X., Jiang, J., Ji, H., Tang, Z., and Wang, H. (2012). Direct evidence of lipid rafts by in situ atomic force microscopy. Small 8, 1243-1250. https://doi.org/10.1002/smll.201102183
  6. Chiari, Y., Cahais, V., Galtier, N., and Delsuc, F. (2012). Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65. https://doi.org/10.1186/1741-7007-10-65
  7. Coiro, J.R., Brunner, A., Mitsutani, C.Y., Weisz, V.M., and Fiori, A.M. (1978). The marginal band and its role in the ellipsoidal shape of Geochelone carbonaria erythrocytes. Arch. Anat. Microsc. Morphol. Exp. 67, 133-143.
  8. Drew, C., Ball, V., Robinson, H., Ellory, J.C., and Gibson, J.S. (2004). Oxygen sensitivity of red cell membrane transporters revisited. Bioelectrochemistry 62, 153-158. https://doi.org/10.1016/j.bioelechem.2003.07.003
  9. Euteneuer, U., Ris, H., and Borisy, G.G. (1985). Polarity of marginal-band microtubules in vertebrate erythrocytes. Eur. J. Cell. Biol. 37, 149-155.
  10. Ferlazzo, A.M., Bruschetta, G., Di Pietro, P., Medica, P., Notti, A., and Rotondo, E. (2011). Phospholipid composition of plasma and erythrocyte membranes in animal species by P-31 NMR. Vet. Res. Commun. 35, 521-530. https://doi.org/10.1007/s11259-011-9496-4
  11. Gao, J., Li, J., Feng, C., Hu, Z., Liu, W., Liang, S., and Yin, D. (2013). Isolation technique and proteomic analysis of the erythrocyte ghosts of red-eared turtle (Trachemys scripta). Electrophoresis 34, 215-223. https://doi.org/10.1002/elps.201200243
  12. Gupta, V.K., Neeves, K.B., and Eggleton, C.D. (2012). Effect of viscoelasticity on the analysis of single-molecule force spectroscopy on live cells. Biophys. J. 103, 137-145. https://doi.org/10.1016/j.bpj.2012.05.044
  13. Hagerstrand, H., Danieluk, M., Bobrowska-Hagerstrand, M., Holmstrom, T., Kralj-Iglic, V., Lindqvist, C., and Nikinmaa, M. (1999). The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization. Mol. Membr. Biol. 16, 195-204. https://doi.org/10.1080/096876899294661
  14. Hao, X., Zhu, N., Gschneidtner, T., Jonsson, E.Ö., Zhang, J., Moth-Poulsen, K., Wang, H., Thygesen, K.S., Jacobsen, K.W., Ulstrup, J., et al. (2013). Direct measurement and modulation of singlemolecule coordinative bonding forces in a transition metal complex. Nat. Commun. 4, 2121.
  15. Hartman, F.A., and Lessler, M.A. (1964). Erythrocyte measurements in fishes amphibia, and reptiles. Biol. Bull. 126, 83-88. https://doi.org/10.2307/1539418
  16. Hinterdorfer, P., Baumgartner, W., Gruber, H.J., Schilcher, K., and Schindler, H. (1996). Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477-3481. https://doi.org/10.1073/pnas.93.8.3477
  17. Jiang, J., Hao, X., Cai, M., Shan, Y., Shang, X., Tang, Z., and Wang, H. (2009). Localization of $Na^+$-$K^+$ ATPases in quasi-native cell membranes. Nano Lett. 9, 4489-4493. https://doi.org/10.1021/nl902803m
  18. Keren, K. (2011). Cell motility: the integrating role of the plasma membrane. Eur. Biophys. J. 40, 1013-1027. https://doi.org/10.1007/s00249-011-0741-0
  19. Kong, F., Li, Z., Parks, W.M., Dumbauld, D.W., Garcia, A.J., Mould, A.P., Humphries, M.J., and Zhu, C. (2013). Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49, 1060-1068. https://doi.org/10.1016/j.molcel.2013.01.015
  20. Medalsy, I., Hensen, U., and Muller, D.J. (2011). Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. In. Ed. 50, 12103-12108. https://doi.org/10.1002/anie.201103991
  21. Morgan, D.A., Class, R., Violetta, G., and Soslau, G. (2009). Cytokine mediated proliferation of cultured sea turtle blood cells: Morphologic and functional comparison to human blood cells. Tissue Cell 41, 299-309. https://doi.org/10.1016/j.tice.2008.12.004
  22. Muller, D.J. (2008). AFM: a nanotool in membrane biology. Biochemistry 47, 7986-7998. https://doi.org/10.1021/bi800753x
  23. Sage, H.J., and Vazquez, J.J. (1967). Studies on a hemagglutinin from the mushroom Agaricus campestris. J. Biol. Chem. 242, 120-125.
  24. Simons, K., and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569-572. https://doi.org/10.1038/42408
  25. Singer, S.J., and Nicolson, G.L. (1972). Fluid mosaic model of structure of cell-membranes. Science 175, 720-731. https://doi.org/10.1126/science.175.4023.720
  26. Snyder, G.K., and Sheafor, B.A. (1999). Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. Amer. Zool. 39, 189-198. https://doi.org/10.1093/icb/39.2.189
  27. Stabenau, E.K., Vanoye, C.G., and Heming, T.A. (1991). Characteristics of the anion transport system in sea turtle erythrocytes. Am. J. Phys. 261, 1218-1225.
  28. Sumino, A., Sumikama, T., Iwamoto, M., Dewa, T., and Oiki, S. (2013). The open gate structure of the membrane-embedded kcsa potassium channel viewed from the cytoplasmic side. Sci. Rep. 3, 1063. https://doi.org/10.1038/srep01063
  29. Suzuki, Y., Sakai, N., Yoshida, A., Uekusa, Y., Yagi, A., Imaoka, Y., Ito, S., Karaki, K., and Takeyasu, K. (2013). High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci. Rep. 3, 2131. https://doi.org/10.1038/srep02131
  30. Tian, Y., Li, J., Cai, M., Zhao, W., Xu, H., Liu, Y., and Wang, H. (2013). High resolution imaging of mitochondrial membranes by in situ atomic force microscopy. RSC Adv. 3, 708-712. https://doi.org/10.1039/C2RA22166G
  31. Tian, Y., Cai, M., Zhao, W., Wang, S., Qin, Q., and Wang, H. (2014a). The asymmetric membrane structure of erythrocytes from Crucian carp studied by atomic force microscopy. Chin. Sci. Bull. 59, 2582-2587. https://doi.org/10.1007/s11434-014-0375-6
  32. Tian, Y., Cai, M., Xu, H., and Wang, H. (2014b). Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy. Anal. Methods [in press].
  33. Vereb, G., Szollosi, J., Matko, J., Nagy, P., Farkas, T., Vigh, L., Matyus, L., Waldmann, T. A., and Damjanovich, S. (2003). Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc. Nat.l Acad. Sci. USA 100, 8053-8058. https://doi.org/10.1073/pnas.1332550100
  34. Wang, H., Hao, X., Shan, Y., Jiang, J., Cai, M., and Shang, X. (2010). Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy 110, 305-312. https://doi.org/10.1016/j.ultramic.2009.12.014
  35. Werneburg, I., and Sanchez-Villagra, M.R. (2009). Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol. Biol. 9, 82. https://doi.org/10.1186/1471-2148-9-82
  36. Wu, J., Gao, J., Qi, M., Wang, J., Cai, M., Liu, S., Hao, X., Jiang, J., and Wang, H. (2013a). High-efficiency localization of $Na^+$-$K^+$ AT Pases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. Nanoscale 5, 11582-11586. https://doi.org/10.1039/c3nr03665k
  37. Wu, J., Hao, X., Wang, Z., Cai, M., and Wang, H. (2013b). Tracking hepatitis B virus-like vesicles in living cells. Chem. Rapid Commun. 1, 27-30.
  38. Xu, H., Su, W., Cai, M., Jiang, J., Zeng, X., and Wang, H. (2013). The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope. PLoS One 8, e61596. https://doi.org/10.1371/journal.pone.0061596
  39. Zhao, W., Tian, Y., Cai, M., Wang, F., Wu, J., Gao, J., Liu, S., Jiang, J., Jiang, S., and Wang, H. (2014). Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS One 9, e91595. https://doi.org/10.1371/journal.pone.0091595
  40. Ziegler, U., Vinckier, A., Kernen, P., Zeisel, D., Biber, J., Semenza, G., Murer, H., and Groscurth, P. (1998). Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett. 436, 179-184. https://doi.org/10.1016/S0014-5793(98)01118-1

Cited by

  1. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy vol.44, pp.11, 2015, https://doi.org/10.1039/C4CS00508B
  2. Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy vol.74, pp.3, 2016, https://doi.org/10.1007/s12013-016-0755-4
  3. Enantiomeric Effect of d-Amino Acid Substitution on the Mechanism of Action of α-Helical Membrane-Active Peptides vol.19, pp.1, 2017, https://doi.org/10.3390/ijms19010067
  4. Structural and functional studies of erythrocyte membrane-skeleton by single-cell and single-molecule techniques vol.12, pp.01, 2019, https://doi.org/10.1142/S1793545818300045