• Title/Summary/Keyword: proteins and amino acids

Search Result 597, Processing Time 0.036 seconds

Purification of a Protease Produced by Bacillus subtilis PCA 20-3 Isolated from Korean Traditional Meju (전통 메주로부터 분리한 Bacillus subtilis PCA 20-3 유래 Protease 의 정제)

  • Lim, Seong-Il;Yoo, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1635-1641
    • /
    • 1999
  • Bacillus subtilis PCA20-3 was isolated from meju and was found to produce a protease. The strain produced the maximum amount of enzyme in the medium containing soytone (0.2%), soluble starch (2%), $(NH_4)_2SO_4\;(0.1%),\;CaCl_2(0.1%),\;yeast\;extract\;(0.01%),\;K_2HPO_4\;(0.1%),\;and\;KH_2PO_4\;(0.1%)$. Protease was first concentrated by ammonium sulfate (80% saturation, w/v) precipitation of culture supernatant. Then the enzyme was purified by column chromatography using CM Sephadex C-50. The collected proteins were rechromatographed using Sephadex G-100 gel filtration column. The fraction with protease active from Sephadex G-100 gel chromatography was found to be pure when examined by SDS-polyacrylamide gel electrophoresis and YMC-pak reverse phase chromatography. Specific activity, yield and purity were 76 U/mg. 2.7%, and 7.6 fold, respectively. The molecular weight of the enzyme was estimated to be 31.5 kDa by SDS-PAGE. The number of amino acids calculated from molecular weight was evaluated about 321 residues. N-terminal sequence of the enzyme was $Val^1-Pro^2-Tyr^3-Gly^4-Val^5-Ser^6-Gln^7-Gly^8-Lys^9-Ala^{10}$.

  • PDF

Effect of Seed Priming on the Germination Performance and Membrane Integrity of Tomato(Lycopersicon esculentum Mill.) Seeds (Priming 처리에 의한 토마토 종자의 발아력과 Membrane Integrity에 미치는 영향)

  • Kang, Jum-Soon;Son, Beung-Gu;Ahn, Chong-Kil
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.221-227
    • /
    • 2003
  • The objective of this research was to determine the effect of seed priming on membrane integrity during poriming and germination. Among the five chemicals, $KNO_3$at 150 mL gave the shortest $T_{50}$ (days required to reach 50% of the final germination percentage). Compared to unprimed, the seeds primed with 150 mL $KNO_3$ at 20$^{\circ}C$ for 4 days had reduced $T_{50}$ values when germinated at 15$^{\circ}C$. These results indicated that seed priming is an effective way for rapid and synchronized germination, especially at low temperature. Changes in conductivity of priming solutions during the 4-days period of priming were highly dependent upon the priming agents. Conductivity of the $KNO_3$ and $K_3PO_4$ solution slowly declined during the first 3 hours ad then increased Amount of amino acids, sugars and proteins exuded from seeds into $KNO_3$ solution were less than those into distilled water and $K_3PO_4$. All the results suggested that the $KNO_3$ priming play a positive role in regulating the permeability of cell membranes.

Role of C-terminal 7 Amino Acids of N4SSB Protein in Its in vivo Activity (N4SSB 단백질의 C-말단기의 7개의 아미노산이 N4SSB 단백질의 in vivo 활성에 미치는 영향)

  • Choi, Mieyoung
    • Korean Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.248-253
    • /
    • 1998
  • Bacteriophage N4, a lytic phage specific for Esherichia coli K12 strain encodes single-stranded DNA-binding protein, N4SSB (bacteriophage N4-coded single-stranded DNA-binding protein). N4SSB protein is originally identified as a protein required for N4 DNA replication. N4SSB protein is also required for N4 late transcription, which is catalyzed by E. coli ${\sigma}^{70}$ RNA polymerase. N4 late transcription does not occur until N4SSB protein is synthesized. Recently it is reported that N4SSB protein is essential for N4 DNA recombination. Therefore N 4SSB protein is a multifunctional protein required for N4 DNA replication, late transcription, and N4 DNA recombination. In this study, a variety of mutant N4SSB proteins containing internal deletions or substitutions were constructed to define and characterize domains important for N4 DNA replication, late transcription, and N4 DNA recombination. Test for the ill vivo activity of these mutant N4SSBs for N4 DNA replication, late transcription, and N4 DNA recombination was examined. The results suggest that C-terminal 7 amino acid residues are important for the activity of N4SSB. Three lysine residues, which are contained in this region play important roles on N4SSB activity.

  • PDF

Studies on the Biochemical Features of Soybean Seeds for Higher Protein Variety -With Emphasis on Accumulation during Maturation and Electrophoretic Patterns of Proteins- (고단백 대두 품종 육성을 위한 종실의 생화학적 특성에 관한 연구 -단백질의 축적과 전기영동 유형을 중심으로)

  • Jong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.1
    • /
    • pp.135-166
    • /
    • 1977
  • Some biochemical features of varietal variation in seed protein and their implications for soybean breeding for high protein were pursued employing 86 soybean varieties of Korea, Japan, and the U.S.A. origins. Also, studied comparatively was the temporal pattern of protein components accumulation during seed development characteristic to the high protein variety. Seed protein content of the 86 soybean varieties varied 34.4 to 50.6%. Non-existence of variety having high content of both protein and oil, or high protein content with average oil content as well as high negative correlation between the content of protein and oil (r=-0.73$^{**}$) indicate strongly a great difficulty to breed high protein variety while conserving oil content. The total content of essential amino acids varied 32.82 to 36.63% and the total content of sulfur-containing amino acids varied 2.09 to 2.73% as tested for 12 varieties differing protein content from 40.0 to 50.6%. The content of methionine was positively correlated with the content of glutamic acid, which was the major amino acid (18.5%) in seed protein of soybean. In particular, the varieties Bongeui and Saikai #20 had high protein content as well as high content of sulfur-containing amino acids. The content of lysine was negatively correlated with that of isoleucine, but positively correlated with protein content. The content of alanine, valine or leucine was correlated positively with oil content. The seed protein of soybean was built with 12 to 16 components depending on variety as revealed on disc acrylamide gel electrophoresis. The 86 varieties were classified into 11 groups of characteristic electrophoretic pattern. The protein component of Rm=0.14(b) showed the greatest varietal variation among the components in their relative contents, and negative correlation with the content of the other components, while the protein component of Rm=0.06(a) had a significant, positive correlation with protein content. There was sequential phases of rapid decrease, slow increase and stay in the protein content during seed development. Shorter period and lower rate of decrease followed by longer period and higher rate of increase in protein content during seed development was of characteristic to high protein variety together with earlier and continuous development at higher rate of the protein component a. Considering the extremely low methionine content of the protein component a, breeding for high protein content may result in lower quality of soybean protein.n.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -I. Chemical Composition of Grape Seed- (폐엽종실(廢棄種實)의 식량자원화(貪糧資源化)에 관(關)하여 -제(第) 1 보(報) : 포도씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Kwon, Joong-Ho;Hwang, Joo-Ho;Choi, Jae-Chun;Shin, Dae-Hyn
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.250-256
    • /
    • 1982
  • A series of studies were conducted to find out the possibility of utilizing grape seed as resources of food fats and proteins, and the results of the studies are as follows: The grape seed contained 25.1%, of crude fat and 12.0% of crude protein. The lipid, fractions obtained by silicic acid column chromatography were mainly composed of about 95.5% neutral lipid, whereas compound lipid was only 4.5% level. Among the neutral lipid by thin layer chromatography, triglyceride was 91.89%, sterol ester, sterol, diglyceride and free fatty acid were 3.24%, 2.87%, 1.20% and 0.80%, respectively The predominant fatty acids of total and neutral lipids were linoleic acid $(69.72{\sim}71.72%)$ and oleic acid $18.09{\sim}19.46%)$, but those of glycolipid and phospolipid were linoleic acid $(31.49{\sim}38.18%)$, oleic acid $(20.20{\sim}35.27%)$ and palmitic acid $(26.80{\sim}39.98%)$. The major fatty acids of triglyceride separated from neutral lipid were oleic acid (43.08%), linoleic acid (38.42%) and palmitic acid (11.60%). The salt soluble protein of grape seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 31%. Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The electrophoretic analysis showed 3 bands in grape seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 82%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main grape seed protein. The molecular weight for the main protein of the grape seed was estimated to be 81,000.

  • PDF

Quality Changes of Dried Lavers during Processing and Storage 1. Quality Evaluation of Different Grades of Dried Lavers and Its Changes during Storage (김의 가공 및 저장중의 품질변화 1. 산지별 등급별 품질평가 및 저장중의 변화)

  • LEE Kang-Ho;SONG Seung-Ho;JEONG In-Hak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.408-418
    • /
    • 1987
  • The quality of different grades of dried lavers obtained from three culture areas was evaluated and its changes during the storage at different levels of water activity were measured. Not much differences in general chemical composition between the locality was detected except some in the content of lipid and pigments. But the quality grades of dried lavers were mainly depended upon the content of protein and pigments including chlorophyll a, carotenoids, and biliproteins although there was little difference in amino acid composition of the proteins, and glutamic acid, aspartic acid and alanine were high in general. The lipid of dried lavers was composed of a high level of polyunsaturated fatty acids, particularly, of eicosapentaenoic acid which amounted to as much as a half of the total lipid, and of palmitic acid that reached a quarter depending on grades. The quality of dried layers was significantly changed by equilibrium moisture level when stored for three months at different water activities in range of 0.1 to 0.6. The loss of chlorophyll a, carotenoid, biliproteins, ascorbic acid, and browning were markedly retarded at aw 0.1 to 0.2. Oxidation of polyunsaturated fatty acids and the loss of free amino acids were also minimized at aw 0.2. Glutamic acid and methionine were reduced very fast during the storage.

  • PDF

Studies on the Development of Food Resources from Waste Seeds IV. Chemical Composition of Red Pepper Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第) 4 보(報) : 고추씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Bae, Man Jong;Hwang, Joo Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 1983
  • In order to find out the possibility of utilizing red pepper seed as food resources of fats and proteins, a series of studies were conducted. The red pepper seed contained 27.6% of crude fat and 22.2% of crude protein. The lipid fractions obtained by silicic acid column chromatography were mainly composed of 95.4% neutral lipid, where as compound lipid were 4.6%. Among the neutral lipid separated by thin layer chromatography, triglyceride was 85.6%, sterol ester 4.9%, free fatty acids 3.4%, diglyceride 2.5%, sterol 2.2% and monoglyceride 1.1%, respectively. The predominant fatty acids of red pepper seed oil were linoleic acid (57.1-75.4%), palmitic acid (13.9-21.3%) and oleic acid (8.0-15.1%), especially glycolipid contained 1.7% of linolenic acid and small amount of myristic acid and arachidic acid. The salt soluble protein of red pepper seed was highly dispersible in 0.02M sodium phosphate buffer containing 1.0M $MgSO_4$, and the extractability of seed protein was about 25.0%. Glutamic acid and arginine were major amino acids of red pepper seed protein. The electrophoretic analysis showed 6 bands in seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was about 62.2%. Glutamic acid (19.9%) was major amino acid of the main protein, followed by glycine and alanine. The molecular weight of the main protein was estimated to be 93,000.

  • PDF

Proximate Compositions Changed Before and After Fermentation of Rice Spent Water (발효 전후 쌀뜨물의 일반성분 변화)

  • Kim, Min-Ju;Park, Sung-Soo;Kim, Dong-Ho;Kim, Keun-Sung
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.192-197
    • /
    • 2011
  • Rice spent water (RSW) is generated when rice is rinsed before cooking. RSW has been discarded into sewerages due to its low usage in our daily life and become a major domestic wastewater for many years. But RSW can be used as a value-added resource because it contains various beneficial bioactive components. Therefore, fermented rice spent water (FRSW) has been already produced in our previous value-added fermentation process. In this study, proximate compositions and contents of other typical fermentation products were compared between RSW and FRSW. Both RSW and FRSW contain approximately 99.3% moisture and 0.7% total solids. Compared to those of RSW on a dry basis, carbohydrate content of FRSW was decreased by 44.8% and crude protein, lipid, and ash contents of FRSW were increased by 16.4%, 18.8%, and 36.6%, respectively. In addition, starch granules of RSW were intact as those of rice flour were, but those of FRSW were not. RSW did not have lactic acid, but FRSW had 212.13 and 181.25 g/kg D- and L-lactic acid, respectively. Free amino and ammoniacal nitrogen contents of FRSW were 12 and 7 times higher than those of RSW, respectively. Lactic acid, free amino, and ammonical nitrogen contents were considered to be increased in FRSW because carbohydrates could be disintegrated into lactic acids and proteins into free amino or ammoniacal nitrogens during the fermentation process.

Changes in Components and Peptides during Fermentation of Cheonggookjang (청국장 발효시의 성분 변화 및 펩티드의 생성)

  • Ann, Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.1
    • /
    • pp.124-131
    • /
    • 2011
  • We analyzed content and peptides in order to investigate the productivity from Cheonggookjang(fast-fermented soybean paste), fermenting it for 180 hours at $40^{\circ}C$. Results showed that pH was 7.07 at the start and became 7.41 in 24 hours, it eventually increased to 8.63 after 180 hours. Acidity was 0.2 in 12 hours, 0.5 in 12 hours, and then remained on 0.1 thereafter. Total sugar was 1.54 mg/$m\ell$ at the start, but it gradually decreased to 0.76 mg/$m\ell$ after the lapse of 48 hours, and 1.0 mg/$m\ell$ in 120 hours, and finally 0.8 mg/$m\ell$ in 180 hours. Reducing sugar was 0.14 mg/$m\ell$ at the start, and 0.88 mg/$m\ell$ after the lapse of 24 hours, 0.64 mg/$m\ell$ in 48 hours, 0.26 mg/$m\ell$ in 72 hours, and showed no definite change untill 180 hours. The amount of free amino acid was $0.19\;{\mu}M/\ell$ at the start, and $4.88\;{\mu}M/\ell$ after the lapse of 72 hours, $4.5\;{\mu}M/\ell$ in 120 hours, and then it rapidly decreased to $0.23\;{\mu}M/\ell$ after180 hours. Absorbance of soluble protein and peptide at 280 nm was 12.4 in 48 hours, 31.12 in 120 hours, and 31.12 in 180 hours. HPLC revealed that in the fermentation process, large molecular proteins are hydrolyzed into small peptides and amino acids, and after the lapse of 48 hours the pattern became almost the same. The protease activity of Cheonggookjang was 0.011 unit/$m\ell$ after the lapse of 36 hours and then it decreased. The result shows as Cheonggookjang started its deamination of amino acid in 100 hours, it is desirable to produce peptide within 100 hours of its fermentation.

Strategy to Improve the Productivity of Broilers: Focusing on Pre-Starter Diet (초이사료 배합설계를 통한 육계 생산성 증대방안)

  • Nam, Doo Seok;Lee, Jinyoung;Kong, Changsu
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • There are approximately 1,500 broiler farms in Korea, each raising 55,000 birds. Ninety-five percent of the farms are contracted with Integration Company. According to the Korean broiler performance index, broilers in Korea are marketed at 32 days with 1.52 kg of body weight. In contrast, the market age and body weight of broilers are 47 days/2.8 kg in the United States and 42 days/2.5 kg in Europe. Because of the younger market age of the Korean broiler, the pre-starter feed is important. Chicks exhibit poor absorption of dietary nutrients up to 7 days after hatching due to an immature digestive system and low enzyme secretion rate and activity. At the beginning of hatching, chicks obtain their nutrients from the egg yolk sac. It is highly recommended that chicks, after consuming the nutrients in the egg yolk sac, are given supplemented pre-starter feed to increase early growth rates and improve the performance of broiler production. Pre-starter nutrient requirements are not expressed in NRC, so Korean feeding standards for poultry and commercial breeding companies determine the nutrient requirements of pre-starter broiler chickens. Three approaches are followed to formulate specially designed pre-starter feeds for broiler chicks: (i) selective use of raw materials, (ii) proper standards of nutrient supply, and (iii) application of feed additives such as exogenous enzymes. In the selection of raw materials, those with high digestibility can be used. The absorption rate of carbohydrates in grains can be increased through feed processing at high temperature and high pressure. Soy proteins and fish meal can also be added as protein sources. As an energy source, vegetable oils are preferred over animal fats because of the former's high digestibility. It is suggested that the levels of proteins and amino acids are higher in pre-starter feed than in starter feed. With regard to energy, the sources of energy are more important than the levels of energy in feed. Feed additives such as exogenous enzymes can be used to improve nutrient digestibility. In addition, organic acids and plant extracts can be used as alternatives to animal growth promoters to stimulate immunity and prevent diseases. The growth performance of broilers is affected by various factors, such as management and disease control, in addition to the nutritional strategy; however, nutritional strategies play an important role in improving the productivity of broilers. Therefore, nutritional strategies, along with management and disease control, are required for improving the productivity of broilers in Korea.