• Title/Summary/Keyword: proteinase K

Search Result 321, Processing Time 0.027 seconds

Bacillus polyfermenticus CJ9, Isolated from Meju, Showing Antifungal and Antibacterial Activities (메주로부터 분리한 항진균 및 항세균 활성의 Bacillus polyfermenticus CJ9)

  • Jung, Ji-Hye;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.4
    • /
    • pp.340-349
    • /
    • 2009
  • A CJ9 bacterial strain, which showed antifungal and antibacterial activities, was isolated from meju and identified as Bacillus polyfermenticus based on Gram staining, biochemical properties, as well as its 16S rRNA sequence. B. polyfermenticus CJ9 showed the antimicrobial activity against the various pathogenic molds, yeasts, and bacteria. The antibacterial activity was stable in the pH 5.0~9.0, but the activity was lost at $37^{\circ}C$ for 24 hr. The antifungal activity was stable in the pH range of 3.0~9.0 and reduced at $121^{\circ}C$ for 15 min, but antifungal activity was not completely destroyed. The antibacterial activity was completely inactivated by proteinase K, protease, trypsin, and $\alpha$-chymotrypsin. The antifungal activity was also completely inactivated by protease and $\alpha$-chymotrypsin, and reduced its activity by proteinase which indicated that the antifungal and antibacterial compounds have proteineous nature. The apparent molecular mass of the partially purified antifungal compound, as indicated by using the direct detection method in Tricine-SDS-PAGE, was approximately 1.4 kDa. The molecular mass of the antibacterial compound could not be determined because of its heat-liable characteristic.

Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Journal of Pharmacopuncture
    • /
    • v.16 no.2
    • /
    • pp.46-54
    • /
    • 2013
  • Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than $20{\mu}g$ of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as $Hg^{2+}$ and $Fe^{2+}$ inhibited the fibrinolytic activity completely, but $Mn^{2+}$ did not. FE-27kDa preferentially hydrolyzed ${\alpha}$-chain of fibrinogen and slowly hydrolyzed ${\beta}$-chain, but did not hydrolyze ${\gamma}$-chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than $10{\mu}g$ of FE-27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.

Identification of a pr 1-like Gene of Entomopathogenic Fungus, Beauveria bassiana F-101 Isolated from Thecodiplosis japonensis

  • Shin Sang Chul;Roh Jong Yul;Shim Hee Jin;Kim Soon Kee;Kim Chul Su;Park Il Kwon;Jeon Mun Jang;Je Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.131-136
    • /
    • 2005
  • Beauveria bassiana F-101, which has high toxicity toward Acantholyda parki as well as Thecodiplosis japonensis, was an isolate to develop an alternative control system against the major forest pests. Up to now, in B. bassiana, only one pr1 gene has been isolated and characterized. Therefore, we here reported the identification of a pr1-like gene, which would be a factor of toxicity from B. bassiana F-101. The oligonucleotides for the amplification of the pr1-like gene, were chosen based on the conserved regions of the subtilisin family enzymes, pr1 genes of B. bassiana and Metarhizium anisopliae, and proteinase K of Tritirachium album. The cloned PCR fragment had 1111 bp including 52 bp intron. The deduced Pr1-like peptide showed a low identity with Pr1s of entomopathogenic fungi such as B. bassiana Pr1 (BbPr1) and M. anisopliae Pr1 (MaPr1) as well as the proteinase K of T. album (TaPrK). Instead, the deduced peptide had a substantially high amino acid sequence identity $(>65\%)$ with the serine proteases of Magnaporthe grisea (MgSPM1) and Podospora anserina (PaPspA). These results, therefore, appear to suggest that the putative Pr1-like peptide of B. bassiana F-101 belongs to the subtilisin-like serine protease family and may be a novel gene.