Browse > Article

Bacillus polyfermenticus CJ9, Isolated from Meju, Showing Antifungal and Antibacterial Activities  

Jung, Ji-Hye (Department of Food and Nutrition, Chosun University)
Chang, Hae-Choon (Department of Food and Nutrition, Chosun University)
Publication Information
Microbiology and Biotechnology Letters / v.37, no.4, 2009 , pp. 340-349 More about this Journal
Abstract
A CJ9 bacterial strain, which showed antifungal and antibacterial activities, was isolated from meju and identified as Bacillus polyfermenticus based on Gram staining, biochemical properties, as well as its 16S rRNA sequence. B. polyfermenticus CJ9 showed the antimicrobial activity against the various pathogenic molds, yeasts, and bacteria. The antibacterial activity was stable in the pH 5.0~9.0, but the activity was lost at $37^{\circ}C$ for 24 hr. The antifungal activity was stable in the pH range of 3.0~9.0 and reduced at $121^{\circ}C$ for 15 min, but antifungal activity was not completely destroyed. The antibacterial activity was completely inactivated by proteinase K, protease, trypsin, and $\alpha$-chymotrypsin. The antifungal activity was also completely inactivated by protease and $\alpha$-chymotrypsin, and reduced its activity by proteinase which indicated that the antifungal and antibacterial compounds have proteineous nature. The apparent molecular mass of the partially purified antifungal compound, as indicated by using the direct detection method in Tricine-SDS-PAGE, was approximately 1.4 kDa. The molecular mass of the antibacterial compound could not be determined because of its heat-liable characteristic.
Keywords
Bacillus polyfermenticus; antifungal activity; antibacterial activity; proteineous nature;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Besson, F., M. L. Hourdou, and G. Michel. 1990. Studies on the biosynthesis of iturin, an antibiotic of Bacillus subtilis, and a lipopeptide containing beta-hydroxy fatty acids. Biochim. Biophys. Acta. 1032: 101-106   DOI   ScienceOn
2 Eshita, S. M., N. H. Roberto, J. M. Beale, B. M. Mamiya, and R. F. Workman. 1995. Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. J. Antibiot. 48: 1240-1247   DOI   PUBMED
3 Maget-Dana, R. and F. Peypoux. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology. 87: 151-174   DOI   PUBMED   ScienceOn
4 Park, S. Y., Y. J. Yang, Y. B. Kim, J. H. Hong, and C. Lee. 2002. Characterization of Subtilein, a Bacteriocin from Bacillus subtilis CAU131(KCCM 10257). J. Microbiol. Biotechnol. 12: 228-234
5 Peypoux, F., F. Besson, G. Michel, and L. Delcambe. 1981. Structure of bacillomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 118: 323-327   DOI   PUBMED   ScienceOn
6 Sneath, P. H. A. 1986. Endospore-forming gram-positive rods and cocci, p. 1104-1139. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's manual of systematic bacteriology. The Williams & Wilkins Company, Baltimore, Md
7 Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39: 888-901   DOI   PUBMED
8 Winnick, R. E., H. Lis, and T. Winnick. 1961. Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim. Biophys. Acta. 49: 451-462   DOI   ScienceOn
9 Yoon, J. H., S. T. Lee, and Y. H. Park. 1996. Inter- and intraspecific phylogenic analysis of the genes Nocardioides and related taxa based on 16s rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194   DOI   ScienceOn
10 Omura, S., Y. Iwai, R. Masuma, M. Hayashi, T. Furusato, and T. Takagaki. 1980. A new peptide antibiotic, alboleutin. J. Antibiot. 33: 758-759   DOI   PUBMED
11 Paik, H. D., S. S. Bae, S. H. Park, and J. G. Pan. 1997. Identification and partial chaacterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J. Indust. Microbiol. Biotechnol. 19: 297-298   DOI
12 Zheng, G. and M. E. Slavik. 1999. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett. Appl. Microbiol. 28: 363-367   DOI   ScienceOn
13 Peypoux, F., M. T. Pommier, D. Marion, M. Ptak, B. C. Das, and G. Michel. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636-641   DOI   PUBMED
14 Kugler, M., W. Loeffler, C. Rapp, A. Kern, and G. Jung. 1990. Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties. Arch. Microbiol. 153: 276-281   DOI   ScienceOn
15 Sun, L., Z. Lu, X. Bie, F. Lu, and S. Yang. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microbiol. biotechnol. 22: 1259-1266   DOI   ScienceOn
16 Kurylo-Borowska, Z. 1975. Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4. Biochim. Biophys. Acta. 399: 31-41   PUBMED   ScienceOn
17 Meyers, E., W. E. Brown, P. A. Principe, M. L. Rathnum, and W. L. Parker. 1973. EM49, a new peptide antibiotic. I. Fermentation, isolation, and preliminary characterization. J. Antibiot. 26: 444-448   DOI   PUBMED
18 Duc, L. H. and S. M. Cutting. 2003. Bacterial spores as heat stable vaccine vehicles, pp. 1263-1270. Expert Opinion on Biological Therapy. School of Biological Sciences, Royal Holloway, University of London
19 Tagg, J. R. and A. R. McGiven. 1971. Assay system for bacteriocin. Appl. Microbiol. 21: 943   PUBMED   ScienceOn
20 Chang, M. and H. C. Chang. 2007. Characteristics of Bacterial-Koji and Doenjang(soybean paste) Made by using Bacillus subtilis DJI. Kor. J. Microbiol. Biotechnol. 35: 325-333   과학기술학회마을
21 Shoji, J., R. Sakazaki, Y. Wakisaka, K. Koizumi, and M. Mayama. 1976. Isolation of brevistin, a new peptide antibiotic. Studies on antibiotics from the genus Bacillus. IX. J. Antibiot. 29: 375-379   DOI   PUBMED
22 Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characcterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett. Appl. Microbiol. 32: 146-151   DOI   ScienceOn
23 Kluge, B., J. Vater, J. Salnikow, and K. Eckart. 1998. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 231: 107-110   DOI   ScienceOn
24 Tsuge, K., T. Ano, and M. Shoda. 1995. Characterization of Bacillus subtilis YB8, coproducer of lipopeptides surfactin and plipastatin B1. J. Gen. Appl. Microbiol. 41: 541-545   DOI
25 Tenoux, I., F. Besson, and G. Michel. 1991. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester. Microbios. 67: 187-193   PUBMED   ScienceOn
26 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857   DOI   PUBMED   ScienceOn
27 Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474   PUBMED   ScienceOn
28 Tagg, J. R., A. S. Dajani, and L. W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriol. Rev. 40: 722-56   PUBMED   ScienceOn
29 http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi.(2006)
30 Klein, C., C. Kaletta, and K. D. Entian. 1993. Biosynthesis of the lantibiotic subtilin is regulated by a histidine kinase/ response regulator system. Appl. Environ. Microbiol. 59: 296-303   PUBMED   ScienceOn
31 Thomas, D. W. and T. Ito. 1969. The revised structure of the peptide antibiotic esperin, established by mass spectrometry. Tetrahedron. 25: 1985-1990   DOI   ScienceOn
32 Chang, M. and H. C. Chang. 2006. Enhancement of Bacteriocin Production by Bacillus subtilis cx1 in the Presence of Bacillus subtilis ATCC 6633. Kor. J. Microbiol. Biotechnol. 34: 221-227
33 Jung, J. H. and H. C. Chang. 2009. Antifungal activity of Bacillus polyfermenticus CJ6 isolated from meju. J. Kor. Soc. Food Sci. Nutr. 38: 509-516   DOI   ScienceOn
34 Lebbadi, M., A. Galvez, M. Maqueda, M. Martinez-Bueno, and E. Valdivia. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Bacteriol. 77: 49-53   PUBMED   ScienceOn
35 Newton, G. G. 1949. Antibiotics from a strain of B. subtilis; bacilipin A and B and bacilysin. Br. J. Exp. Pathol. 30: 306-319   PUBMED
36 Bhunia, A. K., M. C. Johnson, and B. Ray. 1987. Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl-polyacrylamide gel electrophoresis. J. Indust. Microbiol. 2: 319-322   DOI
37 Jack, R. W., J. R. Tagg, and B. Ray. 1995. Bacteriocins of gram-positive bacteria. Microbiol. Rev. 59: 171-200   PUBMED   ScienceOn
38 Kang, J. S. 2004. Animals fodder for composition Bacillus polyfermenticus. Korean patent. 10-0458487
39 Besson, F. and G. Michel. 1990. Mycosubtilins B and C:minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios. 62: 93-99   PUBMED   ScienceOn
40 Howell, S. F. 1950. Polypeptin, an antibiotic from a member of the Bacillus circulans group. II. Purification, crystallization, and properties of polypeptin. J. Biol. Chem. 186: 863-877   PUBMED
41 Snoke, J. E. 1960. Formation of Bacitracin by washed cell suspensions of Bacillus licheniformis. J. Bacteriol. 80: 552-557   PUBMED
42 http://www.bi-nex.com/(2001)
43 Schägger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379   DOI   ScienceOn