• 제목/요약/키워드: protein-protein network

검색결과 599건 처리시간 0.028초

Enhancement of Adenoviral Transduction and Immunogenecity of Transgenes by Soluble Coxsackie and Adenovirus Receptor-TAT Fusion Protein on Dendritic Cells

  • Kim, Hye-Sung;Park, Mi-Young;Park, Jung-Sun;Kim, Chang-Hyun;Kim, Sung-Guh;Oh, Seong-Taek;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.192-198
    • /
    • 2006
  • Background: Investigating strategy to enhance efficiency of gene transfer via adenovirus is critical to sustain gene expression in targeted cells or tissues to regulate immune responses. However, the use of adenovirus as a gene delivery method has been limited by the native tropism of the virus. In this study, the critical parameter is to improve the efficient binding of viral particles to the plasma membrane prior to cellular uptake. Methods: Human immunodeficiency virus (HIV-1) trans-acting activator of transcription (TAT), a protein transduction domain, was fused to the ectodomain of the coxsackie-adenovirus receptor (CAR). The CAR-TAT protein was produced from a Drosophila Schneider 2 cells (S2) transfected with CAR-TAT genes. The function of CARTAT was analyzed the efficiency of adenoviral gene transfer by flow cytometry, and then immunizing AdVGFP with CAR-TAT was transduced on dendritic cells (DCs). Results: S2 transfectants secreting CAR-TAT fusion protein has been stable over a period of 6 months and its expression was verified by western blot. Addition of CAR-TAT induced higher transduction efficiency for AdVGFP at every MOI tested. When mice were vaccinated with DC of which adenoviral transduction was mediated by CAR-TAT, the number of IFN-${\gamma}$ secreting T-cells was increased as compared with those DCs transduced without CAR-TAT. Conclusion: Our data provide evidence that CAR-TAT fusion protein enhances adenoviral transduction and immunogenecity of transgenes on DCs and may influence on the development of adenoviral-mediated anti-tumor immunotherapy.

Kinesin 모터 단백질의 조절 기전 (The Regulation Mechanisms of Kinesin Motor Proteins)

  • 박상준;석정수;문일수;석대현
    • 생명과학회지
    • /
    • 제27권7호
    • /
    • pp.840-848
    • /
    • 2017
  • 세포내 수송 기구는 세포의 작용과 생존에 필수적이다. 이러한 세포내 수송은 긴 미세소관을 따라서 운반체를 운반하는 미세소관 의존 분자 모터 단백질인 kinesin과 cytoplasmic dynein에 의하여 이루어진다. Kinesin은 ATP 의존적으로 미세소관의 plus-end방향으로 이동하는 모터 단백질로 세포내 소기관, 분비소포, RNA 복합체, 단백질 복합체들을 수송한다. Kinesins에 의한 다양한 운반체의 수송의 이상은 세포의 기능 이상과 연관된다. Kinesins에 의한 운반체 수송의 기본 단계는: 운반체 혹은 adaptor 단백질과의 결합, kinesin 기능 활성화와 미세소관을 따라서 이동, 그리고 올바른 위치에서 운반체와의 분리 단계로 나뉘어 진다. 최근의 연구결과들에서 kinesin 모터 기능 활성화, 운반체와의 결합, 운반체와의 해리 기전이 확인되고 있으며 세포내 운반체 수송은 kinesin과 운반체를 연결하는 adaptor 단백질에 의하여서도 조절된다. 단백질 인산화 효소, 탈 인산화 효소를 포함하는 kinesin 모터 활성 조절 단백질들은 kinesin의 인산화 혹은 탈 인산화를 통하여 직접적으로 세포내 수송을 조절하거나, c-Jun NH-terminal kinase-interacting proteins (JIPs)와 같은 adaptor 단백질들과 미세소관의 간접적 수식을 통하여 세포내 수송을 조절하기도 한다. 이러한 연구결과들은 세포의 기능과 형태 유지에 관여하는 kinesin에 의한 다양한 세포내 수송 조절 기전을 이해하는데 기초적인 토대가 된다. 또한 각각의 kinesin에 대한 조절 기전을 밝히는 것은 세포생물학과 신경생리학을 이해하는데 중요하므로 본 종설에서는 kinesin에 의한 세포내 수송을 조절하는 단백질과 kinesin과 수송체와의 결합이 어떻게 조절되는지를 고찰하고자 한다.

Recombinant Human Bone Morphogenetic Protein-2 Priming of Mesenchymal Stem Cells Ameliorate Acute Lung Injury by Inducing Regulatory T Cells

  • Jooyeon Lee;Jimin Jang;Sang-Ryul Cha;Se Bi Lee;Seok-Ho Hong;Han-Sol Bae;Young Jin Lee;Se-Ran Yang
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.48.1-48.21
    • /
    • 2023
  • Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways. Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSCBMP2) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSCBMP2 were associated with migration and growth. MSCBMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSCBMP2. MSCBMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3+CD25+ Treg of CD4+ cells were further increased in ALI mice treated with MSCBMP2. In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSCBMP2. Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSCBMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.

Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

  • Bae, Mi Jung;Ryu, Suyeon;Kim, Ha-Jeong;Cha, Seung Ick;Kim, Chang Ho;Lee, Jaehee
    • Tuberculosis and Respiratory Diseases
    • /
    • 제80권1호
    • /
    • pp.77-82
    • /
    • 2017
  • Background: Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods: Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results: CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-${\gamma}$ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor ${\alpha}$ and interleukin 10, respectively. Conclusion: ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권8호
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.

Challenges and New Approaches in Genomics and Bioinformatics

  • Park, Jong Hwa;Han, Kyung Sook
    • Genomics & Informatics
    • /
    • 제1권1호
    • /
    • pp.1-6
    • /
    • 2003
  • In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.

Localization of the Membrane Interaction Sites of Pal-like Protein, HI0381 of Haemophilus influenzae

  • Kang, Su-Jin;Park, Sung Jean;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.206-211
    • /
    • 2008
  • HI0381 of Haemophilus influenzae was investigated by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. HI0381 is a 153-residue peptidoglycan-associated outer membrane lipoprotein, and a part of the larger Tol/Pal network. Here, we report its backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments, and secondary structure predictions. About 97% of all of the $^1HN$, $^{15}N$, $^{13}CO$, $^{13}C{\alpha}$, and $^{13}C{\beta}$ resonances covering 131 non-proline residues of the 134 residue, mature protein, were clarified by sequential and specific assignments. CSI and TALOS analyses revealed that HI0381 contains five ${\alpha}$-helices and five ${\beta}$-strands. To characterize the structure of HI0381, the effects of pH and salt concentration were investigated by CD. In addition, the structural changes occurring when HI0381 was in a membranous environment were investigated by comparing its HSQC spectra and CD data in buffer and in DPC micelles; the results showed that helix ${\alpha}4$ and strand ${\beta}4$ became aligned with the membrane. We conclude that the conformation of HI0381 is affected by the membrane environment, implying that its folded state is directly related to its function.

Isolation and Characterization of Human scFv Molecules Specific for Recombinant Human Heat Shock Protein (HSP) 70.1

  • Baek, Hyun-jung;Lee, Jae-seon;Seo, Jeong-sun;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.7-15
    • /
    • 2004
  • Background: The heat shock proteins (HSPs) play an important role in cellular protection mechanisms against physical or chemical stresses. In this study scFv antibodies specific for human HSP70.1 were isolated from a semi-synthetic human scFv library with the ultimate goal of developing anti-HSP70.1 intracellular antibody (intrabody) that may offer an attractive alternative to gene targeting to study the function of the protein in cells. Methods: A semi-synthetic human scFv display library ($5{\times}10^{8}$ size) was constructed using pCANTAB-5E vector and the selection of the library against bacterially expressed recombinant human HSP70.1 was attempted by panning. Results: Three positive clones specific for recombinant HSP70.1 were identified. All three clones used $V_{H}$ subgroup III. On the other hand, $V_{L}$ of two clones belonged to the kappa light chain subgroup I, but the other utilized $V_{k}$ subgroup IV Interestingly, these scFv molecules specifically reacted to the recombinant HSP70.1, yet failed to recognize native HSP70 induced in U937 human monocytic cells by heat treatment. Conclusion: Our results indicated that affinity selection of an scFv phage display library using recombinant antigens produced in E. coli might not guarantee the isolation of scFv antibody molecules specific for a native form of the antigen. Therefore, the source of target antigens needs to be chosen carefully in order to isolate biofunctional antibody molecules.

Synthesis of Substituted Imidazolidin-2-ones as Aminoacyl-tRNA Synthase Inhibitors

  • Eum, Hee-Sung;Lee, Yu-No;Kim, Song-Mi;Baek, A-Young;Son, Min-Ky;Lee, Keun-Woo;Ko, Seung-Whan;Kim, Sung-Hoon;Yun, Sae-Young;Lee, Won-Koo;Ha, Hyun-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.611-614
    • /
    • 2010
  • Substituted imidazolidin-2-ones deduced as potential inhibitors of IleRS by docking simulations were synthesized from an aziridine-2-carboxaldehyde. Reductive amination of an aziridine-2-carboxaldehyde with dipeptides for the substituents at N1 and followed by aziridine-ring expansion with triphosgene afforded 4-chloromethylimidazolidin-2-ones whose chloride were further manipulated towards phenylurea, pyrimidin-2-yl-urea or benzenesulfonamide at C4.