• Title/Summary/Keyword: protein-protein network

Search Result 606, Processing Time 0.026 seconds

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

Proteomics Data Analysis using Representative Database

  • Kwon, Kyung-Hoon;Park, Gun-Wook;Kim, Jin-Young;Park, Young-Mok;Yoo, Jong-Shin
    • Bioinformatics and Biosystems
    • /
    • v.2 no.2
    • /
    • pp.46-51
    • /
    • 2007
  • In the proteomics research using mass spectrometry, the protein database search gives the protein information from the peptide sequences that show the best match with the tandem mass spectra. The protein sequence database has been a powerful knowledgebase for this protein identification. However, as we accumulate the protein sequence information in the database, the database size gets to be huge. Now it becomes hard to consider all the protein sequences in the database search because it consumes much computing time. For the high-throughput analysis of the proteome, usually we have used the non-redundant refined database such as IPI human database of European Bioinformatics Institute. While the non-redundant database can supply the search result in high speed, it misses the variation of the protein sequences. In this study, we have concerned the proteomics data in the point of protein similarities and used the network analysis tool to build a new analysis method. This method will be able to save the computing time for the database search and keep the sequence variation to catch the modified peptides.

  • PDF

Extraction of specific common genetic network of side effect pair, and prediction of side effects for a drug based on PPI network

  • Hwang, Youhyeon;Oh, Min;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.115-123
    • /
    • 2016
  • In this study, we collect various side effect pairs which are appeared frequently at many drugs, and select side effect pairs that have higher severity. For every selected side effect pair, we extract common genetic networks which are shared by side effects' genes and drugs' target genes based on PPI(Protein-Protein Interaction) network. For this work, firstly, we gather drug related data, side effect data and PPI data. Secondly, for extracting common genetic network, we find shortest paths between drug target genes and side effect genes based on PPI network, and integrate these shortest paths. Thirdly, we develop a classification model which uses this common genetic network as a classifier. We calculate similarity score between the common genetic network and genetic network of a drug for classifying the drug. Lastly, we validate our classification model by means of AUC(Area Under the Curve) value.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF

A Machine Learning Based Method for the Prediction of G Protein-Coupled Receptor-Binding PDZ Domain Proteins

  • Eo, Hae-Seok;Kim, Sungmin;Koo, Hyeyoung;Kim, Won
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.629-634
    • /
    • 2009
  • G protein-coupled receptors (GPCRs) are part of multi-protein networks called 'receptosomes'. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.

Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures (단백질 이차 구조 예측을 위한 합성곱 신경망의 구조)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.728-733
    • /
    • 2018
  • Deep learning has been actively studied for predicting protein secondary structure based only on the sequence information of the amino acids constituting the protein. In this paper, we compared the performances of the convolutional neural networks of various structures to predict the protein secondary structure. To investigate the optimal depth of the layer of neural network for the prediction of protein secondary structure, the performance according to the number of layers was investigated. We also applied the structure of GoogLeNet and ResNet which constitute building blocks of many image classification methods. These methods extract various features from input data, and smooth the gradient transmission in the learning process even using the deep layer. These architectures of convolutional neural networks were modified to suit the characteristics of protein data to improve performance.

Computational Methodology for Biodynamics of Proteins (단백질의 동적특성해석을 위한 전산해석기법 연구)

  • Ahn, Jeong-Hee;Jang, Hyo-Seon;Eom, Kil-Ho;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF

Biological Synthesis of Alkyne-terminated Telechelic Recombinant Protein

  • Ayyadurai, Niraikulam;Kim, So-Yeon;Lee, Sun-Gu;Nagasundarapandian, Soundrarajan;Hasneen, Aleya;Paik, Hyun-Jong;An, Seong-Soo;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.424-429
    • /
    • 2009
  • In this study, we demonstrate that the biological unnatural amino acid incorporation method can be utilized in vivo to synthesize an alkyne-terminated telechelic protein, Synthesis of terminally-functionalized polymers such as telechelic polymers is recognized to be important, since they can be employed usefully in many areas of biology and material science, such as drug delivery, colloidal dispersion, surface modification, and formation of polymer network. The introduction of alkyne groups into polymeric material is particularly interesting since the alkyne group can be a linker to combine other materials using click chemistry. To synthesize the telechelic recombinant protein, we attempted to incorporate the L-homopropargylglycine into the recombinant GroES fragment by expressing the recombinant gene encoding Met at the codons for both N- and C-terminals of the protein in the Met auxotrophic E. coli via Hpg supplementation. The Hpg incorporation rate was investigated and the incorporation was confirmed by MALDI-TOF analysis of the telcchelic recombinant protein.

Inferring Undiscovered Public Knowledge by Using Text Mining Analysis and Main Path Analysis: The Case of the Gene-Protein 'brings_about' Chains of Pancreatic Cancer (텍스트마이닝과 주경로 분석을 이용한 미발견 공공 지식 추론 - 췌장암 유전자-단백질 유발사슬의 경우 -)

  • Ahn, Hyerim;Song, Min;Heo, Go Eun
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.26 no.1
    • /
    • pp.217-231
    • /
    • 2015
  • This study aims to infer the gene-protein 'brings_about' chains of pancreatic cancer which were referred to in the pancreatic cancer related researches by constructing the gene-protein interaction network of pancreatic cancer. The chains can help us uncover publicly unknown knowledge that would develop as empirical studies for investigating the cause of pancreatic cancer. In this study, we applied a novel approach that grafts text mining and the main path analysis into Swanson's ABC model for expanding intermediate concepts to multi-levels and extracting the most significant path. We carried out text mining analysis on the full texts of the pancreatic cancer research papers published during the last ten-year period and extracted the gene-protein entities and relations. The 'brings_about' network was established with bio relations represented by bio verbs. We also applied main path analysis to the network. We found the main direct 'brings_about' path of pancreatic cancer which includes 14 nodes and 13 arcs. 9 arcs were confirmed as the actual relations emerged on the related researches while the other 4 arcs were arisen in the network transformation process for main path analysis. We believe that our approach to combining text mining analysis with main path analysis can be a useful tool for inferring undiscovered knowledge in the situation where either a starting or an ending point is unknown.