• Title/Summary/Keyword: protein tyrosine phosphatase(PTP) 1B

Search Result 64, Processing Time 0.024 seconds

Screening of Marine Microbial Extracts for Tyrosine Phosphatase 1B Inhibitors

  • Sohn, Jae-Hak;Park, Sun Jung;Seo, Changon;Chun, Bokyung;Oh, Hyuncheol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.230-233
    • /
    • 2007
  • Protein tyrosine phosphatase 1B (PTP1B) acts as a negative regulator of insulin signaling, and selective inhibition of PTP1B has served as a potential drug target for the treatment of type 2 diabetes. As part of our searching for PTP1B inhibitors from natural products, the extracts of marine microorganisms were screened for the inhibitory effects on the activity of protein tyrosine phosphatase 1B (PTP1B). Among the tested 304 extracts, 29 extracts exhibited inhibition rate ranging 40.1 - 83.6 % against PTP1B at the concentration level of $30{\mu}g/mL$.

  • PDF

Screening of Medicinal Herbs for Inhibitory Activity against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B 저해활성 검색)

  • Lee, Woo-Jung;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.227-231
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B) is predicted to be therapeutic target in treatment of type 2 diabetes and obesity. Thus, in order to search for PTP1B inhibitors, we screened the inhibitory activity of PTP1B in the water extracts of 84 medicinal herbs. Among them, the extracts of Pini Folium, Magnoliae Cortex, Artemisiae asiaticae Herba, Schizonepetae Herba, Menthae Herba, Mume Fructus, Cimicifugae Rhizoma, and Amomi Cardamomi Fructus showed relatively significant (58-68%) inhibitory activity against PTP1B. Especially, the methylene chloride fraction of the methanol extract of Menthae Herba (81% inhibition at 30 ${\mu}g$/ml) showed more potent inhibitory activity against PTP1B than others.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

Screening of the Inhibitory Activity of Medicinal Plants against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B (PTP1B) 저해활성 검색)

  • Hong, Jung-Hyun;Lee, Myung-Sun;Bae, Eun-Young;Kim, Young-Ho;Oh, Hyun-Cheol;Oh, Won-Keun;Kim, Bo-Yeon;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.1 s.136
    • /
    • pp.16-21
    • /
    • 2004
  • Protein tyrosine phosphatase 1B(PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compounds inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. The methanol extracts of 160 herbal medicines were screened for the inhibitory activity against PTP1B. Among the tested extracts, methanol extracts of Amsonia elliptica, Areca catechu, Benincasa hispida, Morus alba, Salvia miltiorrhiza, Siegesbeckia orientalis, and Trichosanthes kirilowii showed relatively strong inhibitory activity against PTP1B.

Revision of Structures of Flavanoids from Scutellaria indica and Their Protein Tyrosine Phosphatase 1B Inhibitory Activity

  • Min, Byung-Sun
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.205-209
    • /
    • 2006
  • The structures of flavonoids, 2(S)-5,7-dihydroxy-8,2'-dimethoxyflavanone (1), wogonin (2), 2(S)-5,7, 2'-trihydroxy-8-methoxyflavanone (3), and 2(S)-5,2',5'-trihydroxy-7,8-dimethoxyflavanone (4), isolated from Scutellaria indica were revised on the basis of 2D NMR spectroscopy, including to gCOSY, gHSQC, and gHMBC. Compounds 1-4 were tested in vitro protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Compounds 2 and 4 exhibited weak PTP1B inhibitory activity with $IC_{50}$ values of 208 and $337{\mu}M$, respectively.

Screening of Korean Traditional Prescriptions with Inhibitory Activity against Protein Tyrosine Phosphatase 1B and Analysis of Jakgamhwangsinbu-tang (芍甘黃辛附湯) Prescription (전통 처방의 Protein Tyrosine Phosphatase 1B 저해 활성 검색 및 작감황신부탕(芍甘黃辛附湯) 처방 분석)

  • Lee, Woojung;Kim, Hyun Jung;Moon, Hong Seop;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.176-181
    • /
    • 2013
  • In order to search for protein tyrosine phosphatase 1B (PTP1B) inhibitors as therapy of type 2 diabetes and obesity from Korean traditional prescriptions, we selected 58 traditional prescriptions based on a review of the Korean traditional medicine books. The hot water extracts of Korean traditional prescriptions were screened for the inhibitory activity against PTP1B. Among the tested extracts, water extracts of Jakgamhwangsinbu-tang, Seonbanghwalmyung-eum, and Takreeonjoong-tang showed relatively good inhibitory activity against PTP1B at the concentration of $30{\mu}g/ml$. Additionally, we evaluated PTP1B inhibitory effect for each herbal ingredient and composition in Jakgamhwangsinbu-tang (芍甘黃辛附湯). Of the tested ingredients from this herbal medicine, water extracts of Paeoniae Radix rubra and Rhei Rhizoma, and ethanol extracts of Paeoniae Radix alba, Rhei Rhizoma, Asiasari Radix, and Aconiti Tuber showed good PTP1B inhibitory effect. Herbal compositions composed of these active herbal ingredients exhibited significant activity for PTP1B inhibition over 70% at $7.5{\mu}g/ml$.

Protein Tyrosine Phosphatase 1B inhibitory Activity of Anthraquinones and Stilbenes

  • Na, Min-Kyun;Jin, Wen Yi;Min, Byung-Sun;Ahn, Jong-Seog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.143-146
    • /
    • 2008
  • Protein tyrosine phosphatase 1B (PTP1B) is emerging as a potential therapeutic target for the treatment of type-2 diabetes and obesity. To search for new types of PTP1B inhibitors, we have undertaken in vitro enzyme assay for some anthraquinones and stilbenes isolated from plants. Of the anthraquinones tested, physcion (1), 1-O-methylemodin (2), and emodin (3) showed high activities, with $IC_{50}$ values of 7.6, 7.0, and $3.8{\mu}g/mL$, respectively, while the anthraquinone glycosides, physcion-8-O-${\beta}$-D-glucopyranoside (4) and emodin-8- O-${\beta}$-D-glucopyranoside (5), were less active than their aglycones. All the stilbenens (6 - 15) slightly inhibited PTP1B activity at high concentration of $30{\mu}g/mL$. Our findings suggest that the hypoglycemic effect of anthraquinones may be associated with their PTP1B inhibitory activity.

Screening of Protein Tyrosine Phosphatase 1B Inhibitory Activity from Some Vietnamese Medicinal Plants

  • Hoang, Duc Manh;Trung, Trinh Nam;Hien, Phan Thi Thu;Ha, Do Thi;Van Luong, Hoang;Lee, Myoung-Sook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.239-244
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, has served as a potential drug target for the treatment of type 2 diabetes. The MeOH extracts of twenty-nine medicinal plants, traditionally used in Vietnam as anti-diabetes agents, were investigated for PTP1B inhibitory activity in vitro. The results indicated that, most materials showed moderate to strong inhibitory activity with $IC_{50}$ values ranging from $3.4\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$; meanwhile, eleven extracts (37.9%) could demonstrate PTP1B activity with $IC_{50}$ values less than $15.5\;{\mu}g/mL$; sixteen extracts (55.2%) could demonstrate PTP1B activity with $IC_{50}$ values ranging from $15.5\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$. The study may provide a proof, at least in a part, for the ethno-medical use in diabetes disease of these plants.

Co-Expression of Protein Tyrosine Kinases EGFR-2 and $PDGFR{\beta}$ with Protein Tyrosine Phosphatase 1B in Pichia pastoris

  • Pham, Ngoc Tu;Wang, Yamin;Cai, Menghao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • The regulation of protein tyrosine phosphorylation is mediated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) and is essential for cellular homeostasis. Co-expression of PTKs with PTPs in Pichia pastoris was used to facilitate the expression of active PTKs by neutralizing their apparent toxicity to cells. In this study, the gene encoding phosphatase PTP1B with or without a blue fluorescent protein or peroxisomal targeting signal 1 was cloned into the expression vector pAG32 to produce four vectors. These vectors were subsequently transformed into P. pastoris GS115. The tyrosine kinases EGFR-2 and $PDGFR{\beta}$ were expressed from vector pPIC3.5K and were fused with a His-tag and green fluorescent protein at the N-terminus. The two plasmids were transformed into P. pastoris with or without PTP1B, resulting in 10 strains. The EGFR-2 and $PDGFR{\beta}$ fusion proteins were purified by $Ni^{2+}$ affinity chromatography. In the recombinant P. pastoris, the PTKs co-expressed with PTP1B exhibited higher kinase catalytic activity than did those expressing the PTKs alone. The highest activities were achieved by targeting the PTKs and PTP1B into peroxisomes. Therefore, the EGFR-2 and $PDGFR{\beta}$ fusion proteins expressed in P. pastoris may be attractive drug screening targets for anticancer therapeutics.