• Title/Summary/Keyword: protein turnover

Search Result 103, Processing Time 0.027 seconds

The Effect of Dietary Calcium Level on Biochemical Variables of Bone Metabolism in Ovariectomized Female Rats (식이 칼슘량이 난소 절제한 흰쥐에서 골대사 지료에 미치는 영향)

  • 최미자
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.3
    • /
    • pp.295-305
    • /
    • 1996
  • This study was done to evaluate the effectiveness of dietary calcium level(a diet which met 100% or twice the calcium level in AIN-76 diet) on preventing bone loss in ovariectomized rats. Forty female Sprauge-Dawley rats(body weight 200$\pm$5g) were divided into two groups. One group were ovariectomized(Ovx) while the others received sham operation(Sham). Thereafter, each rat group was further divided into normal calcium diet(NCD, 0.52%) and high calcium diet(HCD, 1.04%) sub-groups. All rats were fed on experimental diet and deionized water ad libitum for 8 weeks. Urinary pyridinoline & creatinine and serum estradiol, luteinizing hormone, calcium, phosphate, total protein, albumin, alkaline phosphatase and osteocalcin were determined. There were no significant differences in serum calcium. total protein and albumin in the two groups(Ovx vs Sham) of rats. Ovariectomized rats had significantly lower estradiol than sham operated rats. There was a highly significant correlation between total bone mineral density(TBMD) and overall level of esteradiol(r=0.59, p<0.05). Total bone mineral density did not correlate significantly with ALP or osteocalcin, although a negative trend was evident. However, the rats fed high calcium diet had a lower crosslinks value and osteocalcine than the rats fed normal calcium diet. An increased rate of bone turnover is usually associated with a decrease in bone mass bexause bone formation at each remodeling site is never as great as resorption. Ovariectomized rats fed high calcium diet had a lower crosslink value and osteocalcin; it means high cacium diet decreased bone turnover rate. The findings from the present study demonstrated that bone loss due to ovarian hormonal deficiency can be partially prevented by a high calcium diet. Futhermore, these findings support the strategy of the use of a high calcium diet in the prevention of estrogen depletion bone loss (postmenopausal osteoporosis).

  • PDF

Presteady State Kinetics of ATP Hydrolysis by Escherichia coli Rho Protein Monitors the Initiation Process

  • Jeong, Yong-Ju;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.224-230
    • /
    • 2006
  • Escherichia coli transcription termination factor Rho catalyzes the unwinding of RNA/DNA duplex in reactions that are coupled to ATP binding and hydrolysis. We report here the kinetic mechanism of presteady state ATP binding and hydrolysis by the Rho-RNA complex. Presteady state chemical quenched-flow technique under multiple turnover condition was used to probe the kinetics of ATP binding and hydrolysis by the Rho-RNA complex. The quenched-flow presteady state kinetics of ATP hydrolysis studies show that three ATPs are bound to the Rho-RNA complex with a rate of $4.4\;{\times}\;10^5M^{-1}s^{-1}$, which are subsequently hydrolyzed at a rate of $88s^{-1}$ and released during the initiation process. Global fit of the presteady state ATP hydrolysis kinetic data suggests that a rapid-equilibrium binding of ATP to Rho-RNA complex occurs prior to the first turnover and the chemistry step is not reversible. The initial burst of three ATPs hydrolysis was proposed to be involved in the initialization step that accompanies proper complex formation of Rho-RNA. Based on these results a kinetic model for initiation process for Rho-RNA complex was proposed relating the mechanism of ATP binding and hydrolysis by Rho to the structural transitions of Rho-RNA complex to reach the steady state phase, which is implicated during translocation along the RNA.

Effects of Chilling Injury in the Light on Chlorophyll Fluorescence and D1 Protein Turnover in Cucumber and Pea Leaves

  • Eu, Young-Jae;Ha, Suk-Bong;Lee, Choon-Hwan
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.398-404
    • /
    • 1996
  • Light-chilling effects were investigated in chilling-sensitive cucumber (Cucumis sativus L. cv. Ilmichungjang) and chilling-resistant pea (Pisum sativum L. cv. Giant) leaf discs in relation to possible damage in D1 protein. In both plants, dark-chilling did not cause any noticeable changes in (Fv)m/Fm and lincomycin did not affect the decrease in (Fv)m/Fm caused by light-chilling. This result suggests that the de novo synthesis of D1 protein did not occur actively during light-chilling. In pea light-chilled for 6 h. the decreased (Fv)m/Fm was partly recovered in the dark, and almost complete recovery was observed in the light. In cucumber light-chilled for 3 h. the reduced (Fv)m/Fm decreased further for the initial 2 h recovery process in the light regardless of the treatment of lincomycin and recovered very slowly. In both plant species, the treatment of lincomycin inhibited the recovery process in the light, but did not significantly inhibit the process in the dark. In cucumber leaves pulse-labeled with $[^{35}S]Met$, the labeled band intensities of isolated pigment-protein complexes were almost the same during the 6 h light-chilling, but significant decreases in band intensities were observed during the 3 h recovery period. This result suggests that the irreversibly damaged D1 protein was degraded during the recovery period. However, no noticeable changes were observed in the pea leaves during the 12 h chilling and 3 h recovery period. The polyacrylamide gel electrophoresis of the pigment-protein complexes showed that the principal lesion sites of light-chilling were different from those of room temperature photoinhibition.

  • PDF

PB-Overexpression of OsZn15, a CCCH-tandem zinc finger protein, increases drought tolerance in rice

  • Seong, So Yoon;Jung, Harin;Choi, Yang Do;Kim, Ju-Kon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.115-115
    • /
    • 2017
  • Zinc finger proteins constitute a large family which has been studied to have various functions in different organisms. Tandem CCCH zinc finger proteins (TZFs), members of the zinc finger protein family, are known to participate as post-transcriptional regulators of gene expression in eukaryotes. Here, we showed that the OsZn15, a gene for tandem CCCH zinc finger protein, is induced by abiotic stress and its overexpression in transgenic rice plants (PGD1:OsZn15) gains higher drought tolerance. Gene expression analysis of promoter:GFP plants revealed that OsZn15 is specifically expressed in anther and embryo, but not in vegetative organs. In-field evaluation, grain yield was higher in the PGD1:OsZn15 than nontransgenic plants under drought conditions. Interestingly, OsZn15 is shown to not only localize at nucleus but also co-localize with both processing bodies (PB) and stress granules (SG), two messenger ribo-nucleoprotein complexes which are known to activate by forming cytoplasmic foci under stress conditions. In sum, these results suggest that OsZn15 increases drought stress tolerance of rice probably by participating in RNA turnover in PB and SG.

  • PDF

MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA (닭 인터페론 유전자의 클로닝에 관한 연구)

  • ;Hyun Lillehoj
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 1999.11a
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF

Effect of Ginseng Saponin on the $Na^{+}$, $K^{+}$-ATPase of Dog Cardiac Sarcolemma

  • Lee, Shin-Woong;Lee, Jeung-Soo;Kim, Young-Hie;Jin, Kap-Duck
    • Archives of Pharmacal Research
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 1986
  • The effects of ginseng saponins on the sarcolemmal $Na^{+}$, $K^{+}$-ATPase were compared to gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 to elucidate whether the effects are due to the membrane distruption, using a highly enriched preparation of cardiac sarcolemma prepared from dog ventricular myocardium. About 26% and 29% of vesicles in the preparation, enriched in ouabain-sensitive $Na^{+}$, $K^{+}$-ATP ase, $\beta$-adrenergic and muscarinic receptors are rightside-out and inside-out orientation, respectively. Ginseng saponins (triol>total> diol) inhibited $Na^{+}$, $K^{+}$-ATP ase activity, $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H]ouabain binding of sarcolemmal vesicles. However, gypsophila saponin, SDS (0.4$\mu$g/$\mu$g protein) and Triton X-100 (0.6 $\mu$g/$\mu$g protein) caused about 1.35 and 1.40-fold increase in $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H] oubain binding, respectively. Especially, the activating effect of gypsophila saponin on membrane Na+, K+ ATPase was detected at gypsophila saponin to sarcolemmal protein ratios as high as 100. Low dose of ginseng saponin (3$\mu$g/$\mu$g protein) decreased the phosphorylation sites and the concentration of ouabain binding sites (Bmax) without affecting the turnover number and affinity for ouabain binding, while gypsophila saponin, SDS(0.4 ug/ug protein), ahd Triton X-100 (0.6$\mu$g/$\mu$g protein) increased the Bmax. The results suggest that ginseng saponins cause a decrease in the number of active sites by interacting directly with $Na^{+}$, $K^{+}$-ATPase before disruption of membrane barriers of sarcolemmal vesicles.

  • PDF

Muskelin Interacts with Multi-PDZ Domain Protein 1 (MUPP1) through the PDZ Domain (Muskelin과 multi-PDZ domain protein 1 (MUPP1) 단백질의 PDZ 도메인을 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.594-600
    • /
    • 2015
  • Protein-protein interactions have a critical role in the regulation of many cellular functions. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain is one of domains that mediate protein-protein interactions. PDZ domains typically bind to the specific motif at the carboxyl (C)-terminal end of partner proteins. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, serves a scaffolding function for structure proteins and signaling proteins, but the cellular function of MUPP1 has not been fully elucidated. We used the yeast two-hybrid system to identify proteins that interact with PDZ domains of MUPP1. We found an interaction between MUPP1 and muskelin. Muskelin was recently identified as a GABAA receptor (GABAAR) α1 subunit binding protein and known to have a role in receptor endocytosis and degradation. Muskelin bound to the 3rd PDZ domain, but not to other PDZ domains of MUPP1. The C-terminal end of muskelin was essential for the interaction with MUPP1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, muskelin but not the C-terminal deleted muskelin was co-immunoprecipitated with MUPP1. In addition, MUPP1 co-localized with muskelin at the same subcellular region in cells. These findings collectively suggest that MUPP1 or its interacting proteins could modulate GABAAR trafficking and turnover through the interaction with muskelin.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.

Oral Insulin-like Growth Factor-I Combined Alters Intestinal Protein Synthesis in Parenterally-fed Piglets

  • Park, Yoo-Kyoung;Sharon M. Donovan
    • Nutritional Sciences
    • /
    • v.3 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • Partial enteral nutrition (PEN) supplemented with insulin-like growth factor-I (IGF-I) to neonatal piglets receiving parenteral nutrition increases lactase-phlorizin hydrolase (LPH) activity, but not LPH mRNA. The goal of the current study was to investigate the mechanism by which IGF-I up-regulates LPH activity. We hypothesized that IGF-I regulates LPH synthesis post-transcriptionally. Methods: Newborn piglets (n=15) received 100% parenteral nutrition (TPN), 80% parenteral nutrition + 20% PEN (PEN), or PEN + IGF-I (1.0mg/kg/d). On day 7, two stable isotopes of leucine, [$^2 H_3$]-leucine and [$^{13}C_1$]-L-leucine were intravenously administered to measure mucosal protein and brush LPH (BB LPH) synthesis. Results: Weight gain, nutrient intake and jejunal weight and length were similar among the treatment groups. PEN increased mucosal weight, villus width and cross-sectional area, LPH activity, mRNA expression and the abundance of proLPHh compared to 100% TPN (p<0.05). IGF-I further increased mucosal weight, LPH activity and LPH activity per unit BB LPH ~2-fold over PEN alone (p<0.05), but did not affect LPH mRNA or the abundance of proLPHh or mature LPH. Isotopic enrichment of [$^2 H_3$]-leucine and [$^{13}C_1$]-L-leucine in plasma, mucosal protein and LPH precursors, and the fractional and absolute synthesis rates of mucosal protein and LPH were similar among the treatment groups. Total mucosal protein synthesis was increased 60% (p<0.05) and LPH synthesis tended (p=0.14) to be greater in the IGF-I treated animals compared to the other two groups. Conclusions: The primary mechanism by which IGF-I up-regulates LPH may be post-translational, either via reducing LPH turnover, or by specifically altering LPH activity.

  • PDF

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Ko, Hyuk-Wan
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.427-432
    • /
    • 2012
  • Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.