• 제목/요약/키워드: protein surface hydrophobicity

검색결과 44건 처리시간 0.022초

Effects of pH, Electrolyte Concentrations, and Alginate Molecular Weights on Surface Hydrophobicity of Soy Protein Isolates (pH, 전해질의 농도 및 알긴산 분자량이 분리콩단백질의 표면소수성에 미치는 영향)

  • Lim, Yeong-Seon;Yoo, Byung-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제45권9호
    • /
    • pp.1285-1292
    • /
    • 2016
  • Changes in surface hydrophobicity of soy protein isolate (SPI), which plays an important role in the functional characteristics of protein, were measured according to various SPI concentrations, pH levels, electrolytes concentrations, and alginate molecular weights by using 1-anilino-8-naphthalene sulfonic acid as a fluorescent probe. SPI surface hydrophobicity decreased as SPI concentrations increased. SPI surface hydrophobicity reached a maximum at pH 7.0. SPI surface hydrophobicity rapidly increased as the NaCl concentration of SPI solution increased up to 100 mM, and showed no large increases above 100 mM. However, SPI surface hydrophobicity radically decreased until the $CaCl_2$ concentration reached 50 mM and revealed no large variations above 50 mM. A similar trend was exhibited in the case of $MgCl_2$. As both the concentration and molecular weight of sodium alginate increased, SPI surface hydrophobicity decreased. The increasing rate of SPI surface hydrophobicity decreased as the molecular weight of sodium alginate increased.

Effect of pH, Electrolytes, and Molecular Weights of Sodium Alginate (Prepared from Sacchrina japonicas) on Gluten Surface Hydrophobicity (글루텐의 표면소수성에 미치는 전해질, pH 및 다시마(Sacchrina japonicas) 알긴산나트륨의 분자량의 영향)

  • Lim, Yeong-seon;Yoo, Byung-jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제54권4호
    • /
    • pp.543-551
    • /
    • 2021
  • Changes in gluten surface hydrophobicity, which play an important role in the functional characteristics of protein, were measured according to various protein concentrations, pH levels, electrolytes concentrations, and alginate molecular weights using 8-anilino-1-naphthalene sulfonic acid (ANS) as a fluorescent probe. Gluten surface hydrophobicity decreased as gluten concentration increased, reaching a maximum pH of 7.0. The effects of alginate molecular weights and alginate concentration on the surface hydrophobicity, emulsifying activity index (EAI), and emulsion stability index (ESI) of gluten-sodium alginate dispersion (GAD) were measured. Gluten surface hydrophobicity rapidly increased the asl NaCl concentration of gluten solution up to 300 mM and showed no significant increase above 300 mM. However, gluten surface hydrophobicity notably decreased until the concentration of CaCl2 and MgCl2 reached 30 mM, indicating no significant variations above 30 mM. GAD surface hydrophobicity increased as the concentration and molecular weight of sodium alginate increased, however, gluten concentration increased as the GAD surface hydrophobicity decreased. The EAI and ESI of GAD increased as both molecular weight and concentration of sodium alginate increased.

Effect of Surface Hydrophobicity of Soybean Peptides on the Concentration of Serum Cholesterol and Fecal Steroid Excretion in Rats (대두 펩타이드의 표면소수도가 흰쥐의 혈청 콜레스테롤 농도 및 분변 스테로이드의 배설량에 미치는 영향)

  • Han, Eung-Soo;Lee, Hyong-Joo;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • 제25권5호
    • /
    • pp.571-575
    • /
    • 1993
  • Effect of surface hydrophobicity of soybean peptides on serum cholesterol in rats was investigated. Soybean protein(ISP), casein(CNP), and their peptic hydrolyzates fractionated by acid precipitations (SHT, SH8, SH6, SH4, CHT, CH6, CH5, CH4) were fed to rats and the concentration of serum cholesterol and the fecal steroid excretion were measured. And surface hydrophobicities of the peptide fractions were measured by determining by the ANS flourescence intensity and SDS binding capacity. It was found that the higher the surface hydrophobicity of peptides was, the more the fecal steroids excreted(r=0.801) and the lower the concentration of serum cholesterol became(r=-0.868). However, there was no relationship between SDS surface hydrophobicity and fecal steroids or serum cholesterol. ANS surface hydrophobicity of soybean protein was increased by enzymatic hydrolysis. These results suggest that high surface hydrophobicity of peptides formed during digestion is responsible for the hypocholestrolemic effect of soybean protein through the hydrophobic interaction between the peptides and bile salts in rats.

  • PDF

A Study of the Foaming Properties of Peanut Protein Isolate (분리 땅콩 단백질의 기포 특성에 관한 연구)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Kim, Hyon-Jung
    • Korean journal of food and cookery science
    • /
    • 제6권3호통권12호
    • /
    • pp.9-15
    • /
    • 1990
  • Peanut prptein isolate was tested for the purpose of finding out the effect of pH, Sodium Chloride concentration and heat treatment on the solubility, surface hydrophobicity, foam expansion and foam stability. The solubility of peanut protein isolate was affected by pH and showed the lowest value at pH 4.5. When the peanut protein isolate was heated, the solubility decreased at pH 3 and pH 7 but at pH 9 solubility increased. At all pH range, solubility decreased as NaCl was added. The surface hydrophobicity of peanut protein isolate showed the highest value at pH 1.5. Generally, at acidic pH range the surface hydrophobicity was high, but at alkaline region, the surface hydrophobicity increased as the temperature increased. And when NaCl was added, the surface hydrophobicity was also increased. Foam expansion of peanut protein isolate was no significant difference among the values about pH. When the peanut protein was heated and NaCl was added, foam expansion was increased at pH 7. Foam stability was significantly low at pH 4.5 and foam stability was increased at acidic pH region below pH 4.5. At pH 7 and pH 9, heat treatment above $60^{\circ}C$ increased foam stability. When NaCl was added, foam stability was significantly increased at pH 3 and pH 7.

  • PDF

Changes of Functional Properties of Acylated Fish Protein (Acyl화에 의한 어류 단백질의 이화학적 성질의 변화)

  • Bang, Chan-Sik;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • 제33권1호
    • /
    • pp.52-61
    • /
    • 1990
  • Fish protein was acylated with acetic anhydride(AA), succinic anhydride(SA) and maleic anhydride(MA) in order to improve the functional properties of the protein. The surface hydrophobicity and functional properties of protein were measured to study the relationship between them. It was found that the extented acylation of nucleophilic groups such as amino and sulfhydryl groups of the amino acid residues of fish protein was higher than other groups when acylated with AA, and the degree of acylation was 89.5 % for amino groups and 72.2 % for sulfhydryl groups. The surface hydrophobicity of fish protein was decreased by succinylation and maleylation, whereas acetylation caused tittle change. The acylated fish protein concentrate(FPC) showed higher surface hydrophobicity than the acylated fish myofibrilla protein(FMP). Acylation with AA, SA and MA of fish protein resulted in a significant increase in protein solubility, emulsifier properties, foaming properties, water adsorption capacity and oil adsorption capacity. These properties of acylated FMP were more improved than those of acylated FPC. Decrease in protein hydrophobicity was highly correlated with increase in protein solubility, and emulsifier properties and foaming properties were largely dependent on the solubility as well as surface hydrophobicity. The water adsorption capacity of the protein was significantly affected by solubility. Surface hydrophobicity had greater influence on oil adsorption capacity, whereas it had tittle effect on water adsorption capacity.

  • PDF

Investigation on the Surface Hydrophobicity and Aggregation Kinetics of Human Calprotectin in the Presence of Calcium

  • Yousefi, Reza;Ardestani, Susan K.;Saboury, Ali Akbar;Kariminia, Amina;Zeinali, Madjid;Amani, Mojtaba
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.407-413
    • /
    • 2005
  • Calcium and zinc binding protein, calprotectin is a multifunctional protein with broad spectrum antimicrobial and antitumoural activity. It was purified from human neutrophil, using a two-step ion exchange chromatography. Since surface hydrophobicity of calprotectin may be important in membrane anchoring, membrane penetration, subunits oligomerization and some biological roles of protein, in this study attempted to explore the effect of calcium in physiological range on the calprotectin lipophilicity. Incubation of human calprotectin ($50\;{\mu}g/ml$) with different calcium concentrations showed that 1-anilino-8-naphthalene sulfonic acid (ANS) fluorescence intensity of the protein significantly elevates with calcium in a dose dependent manner, suggesting an increase in calprotectin surface hydrophobicity upon calcium binding. Our study also indicates that calcium at higher concentrations (6, 8 and 10 mM) induces aggregation of human calprotectin. Our finding demonstrates that the starting time and the rate constant of calprotectin aggregation depend on the calcium concentration.

Emulsion Properties of Small Red Bean Protein Isolates (분리 팥 단백질의 유화특성에 관한 연구)

  • Kim, Hyon-Jung;Sohn, Kyung-Hee;Park, Hyun-Kyung
    • Korean journal of food and cookery science
    • /
    • 제6권4호통권13호
    • /
    • pp.9-14
    • /
    • 1990
  • The emlsifying properties of small red bean protein isoates were evaluated through their emulsion capacity and stability of the resulting emulsions. The influence of pH, Sodium Chloride and heat treatment on the efficiency of small red bean protein isolates as emulsifying agents was studied. The surface hydrophobicity (So) of small red bean protein islates also examined. The results were obtained as follows; 1. The emusion capacity of small red bean protein isolates was high at pH 11, low at pH 3 and decreased by heat treament. With addition of NaCl, emulsion capacity decreased steadily and showed lowest value when 0.2M NaCl was added. 2. The emulsion stability at pH 4.5 and heat treatment over $60^{\circ}C$ decreased emulsion stability at pH 4.5. When NaCl was added, emulsion stability was generally increased. 3. The surface hydrophobicity of small red bean protein isolates showed the highest value at pH 3 and lowest at pH 11 and increased as the heating temperature increased When 0.2 M NaCl was added, surface hydrophobicity also increased at pH 4.5.

  • PDF

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • 제9권1호
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

Protein-silica Interaction in Silica-based Gel Filtration Chromatography (Silica-based Gel Filtration 크로마토그래피에서의 단백질-실리카 상호작용)

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • YAKHAK HOEJI
    • /
    • 제35권6호
    • /
    • pp.461-465
    • /
    • 1991
  • Silica-based gel filtration chromatography has been used to characterize molecular weight of proteins. However, the molecular weight measured by this method was distorted by protein-silica interactions like hydrophobic and electrostatic forces. Therefore, we characterized protein-silica interaction using two forms of phytochrome (124 kDa) having different hydrophobicity and surface charge. PH and ionic strength affected the retention time of phytochrome suggesting that electrostatic force is the major interaction between protein and silica surface.

  • PDF

Effect of Ohmic Heating on Characteristics of Heating Denaturation of Soybean Protein (옴 가열이 대두 단백질의 열변성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • 제24권4호
    • /
    • pp.740-745
    • /
    • 2011
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when an electrical current is passed throught. In this study, we observed the physical & chemical characteristics changes which occurs in soybean protein during heating denaturation by using ohmic and conventional heating. After the ohmic heating process, we could not find any change of the primary protein structure in the denaturated soy protein samples. However, the rate of imbibed water(RIW) of the ohmic samples was 2 times faster than that of the conventional samples. Also the ANS-surface hydrophobicity was decreased, which is very closely related to RIW. In the differential scanning calorimeter(DSC) analysis result, all 7S soyprotein fraction samples were completely denaturated by ohmic and conventional heating. However, the 11S samples were completely denatured only by ohmic heating. According to the DSC result, we decided that soyprotein was damaged by temperature and electrical current during ohmic heating. The damage of electrical current was a cause of the characteristic changes.