• Title/Summary/Keyword: protein supplementation

Search Result 1,079, Processing Time 0.022 seconds

Effects of Yucca Extracts and Protein Levels on Growth Performance and Nutrient Utilization in Growing Pigs

  • Min, T.S.;Kim, J.D.;Tian, J.Z.;Cho, W.T.;Hyun, Y.;Sohn, K.S.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • A total of 120 pigs were used to investigate the effects of yucca extracts on the growth performance, nutrient digestibility and excretion of growing pigs fed different levels of dietary protein. Pigs were allotted into $2{\times}3$ factorial design by the supplementation with yucca extract (YE, 0 and 120 mg/kg) and 3 levels of dietary protein (16, 18, 20%). During the whole experimental period (18 to 52 kg body weight), there were no significant differences in ADG, ADFI or F/G by YE addition or different protein levels among treatments (p>0.05). Overall, although addition of YE to the diet and elevation of protein level showed better ADG, there were no significant differences in growth performance among treatments. Pigs fed diets with YE showed significantly (p<0.05) higher dry matter (DM), crude ash (CA) and crude protein (CP) digestibility than did the others during the growing period. Concerning the levels of dietary protein, only the CP digestibility was significantly higher in pigs fed high protein diet. Pig fed the low protein diet without YE showed a significantly low CP digestibility (p<0.05). No significant differences were found in crude fat (CF), calcium (Ca) and phosphorus (P) digestibilities regardless of YE supplementation or dietary protein levels. Pigs fed YE supplemented diets showed significantly (p<0.05) higher amino acid digestibility. Also, high CP level diets showed a higher amino acid digestibility than low CP diets (p<0.05). DM and N excretion did not show any significant differences among treatments, there was a slightly lower excretion with increase in dietary protein level. Supplementation with YE significantly decreased the DM and N excretion. Interaction (YE$\times$protein) was found in P excretion. Pigs fed a medium protein diet without YE showed the lowest P excretion during the growing period. The NH3-N content in the feces tended to be increased by the increased dietary protein levels and with YE supplementation. During the whole experimental period, the cost for YE supplementation was similar to value of the improvements of performance obtained. The cost of feeding high level protein was significantly higher than that of medium level protein by 10% and low level protein by 9% (p<0.05). It could be concluded that the effects of dietary protein level and yucca extract on growth performance, nutrient digestibility and excretion might play a role to some extent in growing pigs from the aspect of pollution control.

PROTEIN SPARING EFFECT AND AMINO ACID DIGESTIBILITIES OF SUPPLEMENTAL LYSINE AND METHIONINE IN WEANLING PIGS

  • Han, I.K.;Heo, K.N.;Shin, I.S.;Lee, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.4
    • /
    • pp.393-402
    • /
    • 1995
  • Experiments were conducted to evaluate the nutritive values of supplemental L-lysine, liquid and powder type, and DL-methionine in weanling pigs. For feeding trial, 165 weanling pigs were treated in 2 controls; 18 and 16% CP, 6 supplementations of lysine alone to 16% CP diets; 0.1, 0.2 and 0.4% of liquid and powder type each, and 3 supplementations of lysine + methionine to 15% CP diets; 0.05 + 0.025, 0.1 + 0.05 and 0.2 + 0.1%. Pigs were fed for 5 week to investigate the protein sparing effect of supplemental amino acid, and the optimal supplemental level. A metabolic trial included the measurements of digestibilities of dry matter, crude protein, crude fat, crude fiber, energy, phosphorus and amino acids. The liver acinar cell culture was conducted for the protein synthesis activity of the pigs fed each experimental diet. Supplementation of both type of L-lysine in 16% CP diet showed improved daily weight gain and feed efficiency which were compatible with those of pigs fed 18% CP diet. Groups fed liquid lysine did not differ from those fed powder type in growth performance. Supplementation of lysine and methionine to 15% CP diet did not improve growth performance of pigs to the extent that 18% CP diet was fed. In nutrient digestibility, 16% CP control diet showed significantly (p < 0.05) lower crude protein digestibility than any other treatments. Digestibilities of 16% CP diets with lysine supplementation were equal to that of 18% CP control, while digestibilities of 15% CP diets with the supplementation of lysine + methionine was inferior to that of 18% CP control. Supplementation of lysine alone reduced the nitrogen excretion compared to the none supplemented control groups. However, addition of lysine + methionine excreted more nitrogen than controls. Pigs fed diet supplemented with lysine alone, or lysine + methionine excreted less fecal phosphorus than those fed none supplemetation. Retained protein from liver tissue of pigs fed 18% diet was significantly (p < 0.05) greater than those fed 16% CP diet. A significant difference (p < 0.05) was observed in physical type of lysine. Feeding of powder type showed less secreted protein and greater retained protein in the culture of liver acinar cell. It is concluded that supplementation of lysine at the level of 0.1 to 0.2% can spare 2% of dietary protein and reduce nitrogen excretion by 19.3%. Also, no difference in nutritional values was observed between liquid and powder lysine in weanling pigs.

Using Enzyme Supplemented, Reduced Protein Diets to Decrease Nitrogen and Phosphorus Excretion of Broilers

  • Jacob, Jacqueline P.;Ibrahim, Sami;Blair, Robert;Namkung, Hwan;Paik, In Kee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1561-1567
    • /
    • 2000
  • An experiment was conducted to investigate the effect of dietary protein levels and supplementation of phytase and pentosanase in wheat-soybean meal diet on the performance and output of N and P in broilers. Addition of phytase alone or in combination with pentosanase to reduced or control protein diets did not affect average final body weight of mixed sexes. However, addition of phytase and pentosanase in combination to reduced protein diets in male broilers significantly depressed body weights. Intestinal viscosity of 21d broilers was significantly decreased by addition of phytase and pentosanase alone or in combination. Tibia ash content was significantly increased by phytase supplementation. Supplementation of phytase alone and in combination with pentosanase to reduced protein diets significantly decreased P in manure and daily output of P. Daily N output was lowest in the reduced protein diet supplemented with phytase and pentosanase combination. The retention of DM, N and P was highest in the reduced protein diet supplemented with phytase and pentosanase combination. In conclusion, supplementation of phytase alone or in combination with pentosanase to reduced protein diets can decrease output of N and P. But the combination of the enzymes has no beneficial effects on the performance of broilers, especially those on wheat-soybean meal diet with reduced protein level.

Effect of Plants Containing Secondary Compounds with Palm Oil on Feed Intake, Digestibility, Microbial Protein Synthesis and Microbial Population in Dairy Cows

  • Anantasook, N.;Wanapat, M.;Cherdthong, A.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.820-826
    • /
    • 2013
  • The objective of this study was to determine the effect of rain tree pod meal with palm oil supplementation on feed intake, digestibility, microbial protein synthesis and microbial populations in dairy cows. Four, multiparous early-lactation Holstein-Friesian crossbred (75%) lactating dairy cows with an initial body weight (BW) of $405{\pm}40$ kg and $36{\pm}8$ DIM were randomly assigned to receive dietary treatments according to a $4{\times}4$ Latin square design. The four dietary treatments were un-supplementation (control), supplementation with rain tree pod meal (RPM) at 60 g/kg, supplementation with palm oil (PO) at 20 g/kg, and supplementation with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter intake. The cows were offered concentrates, at a ratio of concentrate to milk production of 1:2, and chopped 30 g/kg of urea treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM, respectively. It was found that supplementation with RPM and/or PO to dairy cows diets did not show negative effects on feed intake and ruminal pH and BUN at any times of sampling (p>0.05). However, RPM supplementation resulted in lower crude protein digestibility, $NH_3$-N concentration and number of proteolytic bacteria. It resulted in greater allantoin absorption and microbial crude protein (p<0.05). In addition, dairy cows showed a higher efficiency of microbial N supply (EMNS) in both RPM and RPO treatments. Moreover, NDF digestibility and cellulolytic bacteria numbers were highest in RPO supplementation (p<0.05) while, supplementation with RPM and/or PO decreased the protozoa population in dairy cows. Based on this study, supplementation with RPM and/or PO in diets could improve fiber digestibility, microbial protein synthesis in terms of quantity and efficiency and microbial populations in dairy cows.

INFLUENCE OF DIETARY PROTEIN ON THE APPARENT ABSORPTION AND RETENTION OF SELENIUM IN SHEEP

  • Serra, A.B.;Serra, S.D.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.551-556
    • /
    • 1996
  • Selenium (Se) apparent absorption and retention in sheep as influenced by diets differing in protein content through soybean meal supplementation was studied. A $3{\times}3$ Latin square design was used with three Japanese Corriedale wethers (45 kg average body weight), three periods, and three dietary treatments. In each period, 7 d dietary adjustment was followed by 5 d total collection of urine and feces. The three dietary treatments were : Diet 1, without soybean meal supplementation (14% crude protein, CP); Diet 2, with 10% soybean meal supplementation (16.5% CP); and Diet 3, with 20% soybean meal supplementation (19% CP). All the diets had a Se supplementation in the form of sodium selenite at 0.2 mg Se/kg dietary DM. The dietary DM intake of the animals was 2% of their body weight. No significant differences were obtained among the three dietary treatments of the Se balance of the animals. However, as percent of Se intake, only urinary Se concentration of Diet 3 was markedly lower (p < 0.05) than the other diets. Fecal Se as percent of Se intake followed the trend of Diet 3> Diet 2 > Diet 1 resulting a Se absorbed as percent of Se intake of 58.9%, 62.3% and 68.2% for Diets 3, 2 and 1, respectively but their differences among each other were insignificant. No significant differences that were observed either on Se retained as percent of intake (Diet 1, 48.2%; Diet 2, 45.2%; Diet 3, 46.0%) or Se retained as percent of Se absorbed (Diet 1, 70.7%; Diet 2, 72.4%; Diet 3, 77.9%). Significant correlation coefficients among the various measures of Se utilization were also observed. Regression analysis showed the following equation: Y = 93.8 - 1.86X (p <0.05, $r^{2}=0.48$), where Y is the Se absorbed as percent of Se intake (%) and X is the dietary protein content (%). This study concludes that Se requirement in sheep is greater when dietary protein content is high.

EFFECT OF SUPPLEMENTATION WITH PROTEIN MEAL ON THE GROWTH OF CATTLE GIVEN A BASAL DIET OF UNTREATED OR AMMONIATED RICE STRAW

  • Perdok, H.B.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.4
    • /
    • pp.269-279
    • /
    • 1990
  • A 98 d feeding trial carried out to study liveweight change and rumen metabolites in heifers weighing initially 275 kg and given either untreated or ammoniated rice straw supplemented with 0, 0.4, 0.8 or 1.2 kg protein meal consisting of cottonseed meal (60). All 32 animals received 0.6 kg rice polishings/hd/d and had continuous access to molasses/urea block-licks containing 15% urea. The effects on growth rates of treatment of the straw with ammonia and of supplementation with bypass protein were additive. The heifers fed ammoniated straw grew 267 g/hd/d (p<0.001) faster and consumed 11% (p<0.05) more straw than the heifers on untreated straw. The mean growth response to bypass protein was 0.37 kg gain/kg protein meal supplied. Supplementation with protein meal tended (p=0.06) to depress intake of straw, but straw intakes of the unsupplemented groups were high. Small changes in the composition of the block-licks that were fed throughout the feeding trial led to changes in block intake and in intake of untreated straw. Increasing quantities of protein meal fed were associated with linear increase in concentrations of ammonia (p<0.05) and in molar percentages of iso-butyrate (p<0.01), iso-valerate (p<0.01) and valerate (p<0.01) in the rumen fluid of the heifers on a basal diet of untreated straw. However, in the rumen fluid of the heifers given ammoniated straw, the levels of these metabolities were not affected by the quantity of protein meal given.

Effect of Sources of Supplementary Protein on Intake, Digestion and Efficiency of Energy Utilization in Buffaloes Fed Wheat Straw Based Diets

  • Mehra, U.R.;Khan, M.Y.;Lal, Murari;Hasan, Q.Z.;Das, Asit;Bhar, R.;Verma, A.K.;Dass, R.S.;Singh, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.5
    • /
    • pp.638-644
    • /
    • 2006
  • Sixteen adult male buffaloes (average body weight $443{\pm}14kg$) were equally distributed into four groups in an experiment to study the effect of supplementary protein sources on energy utilization efficiency in buffaloes fed a wheat straw-based diet. The animals in the control group were offered a basal diet composed of 700 g deoiled ground nut cake and ad libitum wheat straw. Animals of other groups were offered 1.8 kg of soyabean meal (SBM), linseed meal (LSM) or mustard cake (MC) along with the basal diet. Protein supplementation increased the digestibility of DM (p<0.01), OM (p<0.01) CP (p<0.01) and CF (p<0.05). Maximum CP digestibility was observed on SBM, followed by LSM and MC when compared to the control. Total DMI and DOMI was significantly (p<0.01) higher in protein supplemented groups with no differences between treatment groups. Digestible crude protein (DCP) intake and N balance were significantly (p<0.01) different between the groups; maximum response was obtained with SBM supplementation, followed by LSM and MC. Faecal energy was significantly (p<0.01) lower in SBM and LSM groups in comparison to other groups. Methane production (% DEI) was significantly (p<0.05) lower on the SBM treatment. Metabolizable energy (ME) intake increased significantly due to protein supplementation. Metabolizable energy intake (MEI) of animals in the MC group was less than LSM and SBM. Energy balance was increased significantly (p<0.01) due to protein supplementation and within supplement variation was also significant with maximum balance in SBM followed by LSM and MC groups. Protein supplementation significantly (p<0.05) increased the digestibility and metabolizability of energy from whole ration. Metabolizable energy (ME) content (Mcal/kg DM) of SBM, LSM and MC was 4.49, 3.56 and 2.56, respectively. It was concluded that protein supplementation of wheat straw increased intake, digestibility and metabolizability of energy and maximum response could be obtained when soybean meal was used as a supplement.

Animal protein hydrolysate reduces visceral fat and inhibits insulin resistance and hepatic steatosis in aged mice

  • Su-Kyung Shin;Ji-Yoon Lee;Heekyong R. Bae;Hae-Jin Park;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: An increasing life expectancy in society has burdened healthcare systems substantially because of the rising prevalence of age-related metabolic diseases. This study compared the effects of animal protein hydrolysate (APH) and casein on metabolic diseases using aged mice. MATERIALS/METHODS: Eight-week-old and 50-week-old C57BL/6J mice were used as the non-aged (YC group) and aged controls (NC group), respectively. The aged mice were divided randomly into 3 groups (NC, low-APH [LP], and high-APH [HP] and fed each experimental diet for 12 weeks. In the LP and HP groups, casein in the AIN-93G diet was substituted with 16 kcal% and 24 kcal% APH, respectively. The mice were sacrificed when they were 63-week-old, and plasma and hepatic lipid, white adipose tissue weight, hepatic glucose, lipid, and antioxidant enzyme activities, immunohistochemistry staining, and mRNA expression related to the glucose metabolism on liver and muscle were analyzed. RESULTS: Supplementation of APH in aging mice resulted in a significant decrease in visceral fat (epididymal, perirenal, retroperitoneal, and mesenteric fat) compared to the negative control (NC) group. The intraperitoneal glucose tolerance test and area under the curve analysis revealed insulin resistance in the NC group, which was alleviated by APH supplementation. APH supplementation reduced hepatic gluconeogenesis and increased glucose utilization in the liver and muscle. Furthermore, APH supplementation improved hepatic steatosis by reducing the hepatic fatty acid and phosphatidate phosphatase activity while increasing the hepatic carnitine palmitoyltransferase activity. Furthermore, in the APH supplementation groups, the red blood cell (RBC) thiobarbituric acid reactive substances and hepatic H2O2 levels decreased, and the RBC glutathione, hepatic catalase, and glutathione peroxidase activities increased. CONCLUSIONS: APH supplementation reduced visceral fat accumulation and alleviated obesity-related metabolic diseases, including insulin resistance and hepatic steatosis, in aged mice. Therefore, high-quality animal protein APH that reduces the molecular weight and enhances the protein digestibility-corrected amino acid score has potential as a dietary supplement for healthy aging.

Effect of different levels of protein concentrates supplementation on the growth performance, plasma amino acids profile and mTOR cascade genes expression in early-weaned yak calves

  • Peng, Q.H.;Khan, N.A.;Xue, B.;Yan, T.H.;Wang, Z.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Objective: This study evaluated the effects of different levels of protein concentrate supplementation on the growth performance of yak calves, and correlated the growth rate to changes occurring in the plasma- amino acids, -insulin profile, and signaling activity of mammalian target of rapamycin (mTOR) cascade to characterize the mechanism through which the protein synthesis can be improved in early weaned yaks. Methods: For this study, 48 early (3 months old) weaned yak calves were selected, and assigned into four dietary treatments according to randomized complete block design. The four blocks were balanced for body weight and sex. The yaks were either grazed on natural pasture (control diet) in a single herd or the grazing yaks was supplemented with one of the three protein rich supplements containing low (17%; LP), medium (19%; MP), or high (21%; HP) levels of crude proteins for a period of 30 days. Results: Results showed that the average daily gain of calves increased (0.14 vs 0.23-0.26 kg; p<0.05) with protein concentrates supplementation. The concentration of plasma methionine increased (p<0.05; 8.6 vs $10.1-12.4{\mu}mol/L$), while those of serine and tyrosine did not change (p>0.05) when the grazing calves were supplemented with protein concentrates. Compared to control diet, the insulin level of calves increased (p<0.05; 1.86 vs $2.16-2.54{\mu}IU/mL$) with supplementation of protein concentrates. Addition of protein concentrates up-regulated (p<0.05) expression of mTOR-raptor, mammalian vacuolar protein sorting 34 homolog, the translational regulators eukaryotic translation initiation factor 4E binding protein 1, and S6 kinase 1 genes in both Longissimus dorsi and semitendinosus. In contrast, the expression of sequestosome 1 was down-regulated in the concentrate supplemented calves. Conclusion: Our results show that protein supplementation improves the growth performance of early weaned yak calves, and that plasma methionine and insulin concentrations were the key mediator for gene expression and protein deposition in the muscles.

Folic acid supplementation prevents high fructose-induced non-alcoholic fatty liver disease by activating the AMPK and LKB1 signaling pathways

  • Kim, Hyewon;Min, Hyesun
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.309-321
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to evaluate the effects of folic acid supplementation in high-fructose-induced hepatic steatosis and clarify the underlying mechanism of folic acid supplementation. MATERIALS/METHODS: Male SD rats were fed control, 64% high-fructose diet, or 64% high-fructose diet with folic acid for eight weeks. Plasma glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, lipid profiles, hepatic lipid content, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: The HF diet significantly increased hepatic total lipid and triglyceride (TG) and decreased hepatic SAM, SAH, and SAM:SAH ratio. In rats fed a high fructose diet, folic acid supplementation significantly reduced hepatic TG, increased hepatic SAM, and alleviated hepatic steatosis. Moreover, folic acid supplementation in rats fed high fructose enhanced the levels of phosphorylated AMP-activated protein kinase (AMPK) and liver kinase B (LKB1) and inhibited phosphorylation of acetyl coenzyme A carboxylase (ACC) in the liver. CONCLUSIONS: These results suggest that the protective effect of folic acid supplementation in rats fed high fructose may include the activation of LKB1/AMPK/ACC and increased SAM in the liver, which inhibit hepatic lipogenesis, thus ameliorating hepatic steatosis. The present study may provide evidence for the beneficial effects of folic acid supplementation in the treatment of non-alcoholic fatty liver disease.