• 제목/요약/키워드: protein structures

검색결과 586건 처리시간 0.029초

Apriona germari Larval Cuticle Protein Genes: Genomic Structure of Three Cuticle Protein Genes and cDNA Cloning of a Novel Cuticle Protein

  • Zheng Gui Zhong;Kim Bo-Yeon;Yoon Hyung-Joo;Wei Ya Dong;Xijie Guo;Jin Byung-Rae;Shon Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제14권1호
    • /
    • pp.51-56
    • /
    • 2007
  • In a previous study, three larval cuticle protein genes were cloned from the mulberry longicorn beetle, Apriona germari (Comp. Biochem. Physiol. B 136, 803-811, 2003). In the present study, the genomic structures of these three larval cuticle protein genes (AgLCP9.2, AgLCP12.6 and AgLCP12.3) were elucidated. All three cuticle protein genes consist of one intron and two exons. Southern blot analysis of genomic DNA suggested that three cuticle protein genes are a single copy gene. In addition, a novel larval cuticle protein gene, AgLCP10.6, was cloned from A. germari in this study. The AgLCP10.6 cDNA contains an ORF of 300 nucleotides that are capable of encoding a 100-amino acid polypeptide with a predicted molecular mass of 10.6 kDa. The amino acid sequence deduced from the AgLCP10.6 cDNA contained a type-specific consensus sequence identifiable in other insect cuticle proteins and is most homologous to Drosophila melanogaster cuticle protein ACP65A (51 % protein sequence identity). Northern blot analysis revealed that AgLCP10.6 showed epidermis-specific expression.

Study of protein loop conformational changes by free energy estimation using colony energy

  • Kang, Beom Chang;Lee, Gyu Rie;Seok, Chaok
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.63-74
    • /
    • 2014
  • Predicting protein loop structures is an important modeling problem since protein loops are often involved in diverse biological functions by participating in enzyme active sites, ligand binding sites, etc. However, loop structure prediction is difficult even when structures of homologous proteins are known due to large sequence and structure variability among loops of homologous proteins. Therefore, an ab initio approach is necessary to solve loop modeling problems. One of the difficulties in the development of ab initio loop modeling method is to derive an accurate scoring function that closely approximates the true free energy function. In particular, entropy as well as energy contribution have to be considered adequately for loops because loops tend to be flexible compared to other parts of protein. In this study, the contribution of conformational entropy is considered in scoring loop conformations by employing "colony energy" which was previously proposed to estimate the free energy for an ensemble of conformations. Loop conformations were generated by using two EDISON_Chem programs GalaxyFill and GalaxySC, and colony energy was designed for this sampling by tuning relevant parameters. On a test set of 40 loops, the accuracy of predicted loop structure improved on average by scoring with the colony energy compared to scoring by energy alone. In addition, high correlation between colony energy and deviation from the native structure suggested that more extensive sampling can further improve the prediction accuracy. In another test on 6 ligand-binding loops that show conformational changes by ligand binding, both ligand-free and ligand-bound states could be identified by using colony energy when no information on the ligand-bound conformation is used.

  • PDF

Fact constellation 스키마와 트리 기반 XML 모델을 적용한 실험실 레벨의 단백질 데이터 통합 기법 (An Approach for Integrated Modeling of Protein Data using a Fact Constellation Schema and a Tree based XML Model)

  • 박성희;이영화;류근호
    • 정보처리학회논문지D
    • /
    • 제11D권3호
    • /
    • pp.519-532
    • /
    • 2004
  • 유전자 및 단백질간의 복잡한 상호작용에 의해 기능이 결정되는 생명정보 데이터의 특성으로 인하여 생명정보 데이터 분석을 위해서는 이질적인 데이터를 통합적으로 분석할 수 있는 통합시스템이 요구된다. 따라서 이 논문에서는 생물학 실험실 레벨에서 단백질 구조 관련 데이터를 통합할 수 있도록 XML 모델기반에 웨어하우스 미디에이터 통합시스템을 제안한다. 제안 시스템은 fact constellation 모델을 기반하여 이질적인 소스에 대한 통합 모델링을 진행하고 통합 스키마를 XML 스키마로 변환하여 유지한다. 또한 통합 데이터베이스에 포함된 소스 데이터의 변경 및 출처에 대한 추적 관리를 위해 데이터의 점진적 갱신방법과 서열에 대한 버전관리를 이용한다. 실제로 이 시스템을 단백질 구조(PDB), 서열(Swiss-Prot)과 도메인 분류데이터(CATH) 통합에 적용한 통합 모델링 과정을 보여준다.

Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene

  • Wang, Hongtao;Xu, Fengjiao;Wang, Xinqi;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제43권3호
    • /
    • pp.482-487
    • /
    • 2019
  • Background: The mixed-cultivation of different Panax ginseng cultivars can cause adverse effects on stability of yield and quality. K-1 is a superior cultivar with good root shape and stronger disease resistance. DNA markers mined from functional genes are clearly desirable for K-1, as they may associate with major traits and can be used for marker-assisted selection to maintain the high quality of Korean ginseng. Methods: Five genes encoding pathogenesis-related (PR) proteins of P. ginseng were amplified and compared for polymorphism mining. Primary, secondary, and tertiary structures of PR5 protein were analyzed by ExPASy-ProtParam, PSSpred, and I-TASSER methods, respectively. A coding single nucleotide polymorphism (SNP)-based specific primer was designed for K-1 by introducing a destabilizing mismatch within the 3' end. Allele-specific polymerase chain reaction (PCR) and real-time allele-specific PCR assays were conducted for molecular discrimination of K-1 from other cultivars and landraces. Results: A coding SNP leading to the modification of amino acid residue from aspartic acid to asparagine was exploited in PR5 gene of K-1 cultivar. Bioinformatics analysis showed that the modification of amino acid residue changed the secondary and tertiary structures of the PR5 protein. Primer KSR was designed for specific discrimination of K-1 from other ginseng cultivars and landraces. The developed real-time allele-specific PCR assay enabled easier automation and accurate genotyping of K-1 from a large number of ginseng samples. Conclusion: The SNP marker and the developed real-time allele-specific PCR assay will be useful not only for marker-assisted selection of K-1 cultivar but also for quality control in breeding and seed programs of P. ginseng.

Structural Properties of Fibril-forming Segments of α-Synuclein

  • Yoon, Je-Seong;Park, Joon-Ho;Jang, Soon-Min;Lee, Kyung-Hee;Shin, Seo-Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.623-629
    • /
    • 2009
  • We have performed replica-exchange molecular dynamics simulations on 41 residue peptide mainly composed of NAC (non A$\beta$ component) sequence in $\alpha$-Synuclein. To investigate conformational characteristics of intrinsically unstructured peptides, we carried out structural analysis on the ‘representative structures’ for ensemble of structures occurring at different temperatures. The secondary structure profile obtained from our simulations suggests that the NAC region of $\alpha$-synuclein can be divided into roughly three helical-like segments. It is found that the overall helix-turn-helix like topology is conserved even though the conformational fluctuations grow as the temperature increases. The coordinate-based and the distance-based representative structures exhibit noticeable differences at higher temperatures while they are similar at lower temperatures. It is found that structural variations for the coordinate-based representative structures are much larger, suggesting that distance-based representative structures provide more reliable information concerning characteristic features of intrinsically unstructured proteins. The present analysis also indicates that the conformational features of representative structures at high temperatures might be related to those in membrane or low pH environment.

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.

단백질 3차원 구조의 지역적 유사성을 이용한 Flexible 단백질 구조 정렬에 관한 연구 (A Study of Flexible Protein Structure Alignment Using Three Dimensional Local Similarities)

  • 박찬용;황치정
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.359-366
    • /
    • 2009
  • 구조적 생물 정보학 분야는 단백질의 3차원 구조를 대상으로 단백질을 연구하는 분야이며, 본 논문에서는 구조적 생물 정보학 분야의 핵심 연구 주제중의 하나인 Flexible 단백질 구조 정렬에 관한 새로운 알고리즘을 제시한다. Flexible 단백질 구조 정렬을 위하여, 단백질의 3차원 구조의 지역적인 유사성을 이용하여 두 단백질의 유사한 부분 구조를 추출해 내고, 이 추출된 유사 구조간에 연결 가능성을 검색하여 정렬이 가능한 모든 유사 구조를 찾고, 이 유사 구조에 꺽임점을 도입하여 Flexible 단백질 구조 정렬을 수행하였다. 이 과정에서 단백질의 지역적 유사성을 정확히 비교하기 위하여 RDA를 이용한 방법을 제안하였고, Flexible 단백질 구조 정렬시 신뢰성 있는 꺽임점 위치 선정 방법과 그래프를 이용한 최적화 방법을 제안하였다. 성능 평가를 위하여 다양한 방법으로 Flexible 단백질 구조 정렬의 성능 평가를 수행하였고, 기존의 방법인 DALI, CE, FATCAT 보다 성능의 우수함을 나타내었다.

Conformational Sampling of Flexible Ligand-binding Protein Loops

  • Lee, Gyu-Rie;Shin, Woong-Hee;Park, Hahn-Beom;Shin, Seok-Min;Seok, Cha-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.770-774
    • /
    • 2012
  • Protein loops are often involved in diverse biological functions, and some functional loops show conformational changes upon ligand binding. Since this conformational change is directly related to ligand binding pose and protein function, there have been numerous attempts to predict this change accurately. In this study, we show that it is plausible to obtain meaningful ensembles of loop conformations for flexible, ligand-binding protein loops efficiently by applying a loop modeling method. The loop modeling method employs triaxial loop closure algorithm for trial conformation generation and conformational space annealing for global energy optimization. When loop modeling was performed on the framework of ligand-free structure, loop structures within $3\AA$ RMSD from the crystal loop structure for the ligand-bound state were sampled in 4 out of 6 cases. This result is encouraging considering that no information on the ligand-bound state was used during the loop modeling process. We therefore expect that the present loop modeling method will be useful for future developments of flexible protein-ligand docking methods.

N-Terminal Amino Acid Sequences of Receptor-Like Proteins that Bind to preS1 of HBV in HepG2 Cells

  • Lee, Dong-Gun;Liu, Ming-Zhu;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.180-182
    • /
    • 1996
  • One of the essential functions of virus surface proteins is the recognition of specific receptors on target cell membranes, and cellular receptors play an important role in viral pathogenesis. But the earliest steps of hepatitis B virus (HBV) infection, such as hepatocyte receptor interaction with the virus, are poorly understood. Previous work has suggested an important role of the preS1 region of HBV envelope protein in mediating viral binding to hepatocytes. Although hepatitis B virus (HBV) infection appears to be initiated by specific binding of virions to cell membrane structures via one or potentially several viral surface proteins, data showing the identification or isolation of the HBV receptor (s) are not yet available. The receptor-like proteins on the plasma membrane surface of HepG2 cells that bind to PreS1 were separated and identified using affinity chromatography, and the amino-terminal amino acid sequences of the receptor-like proteins were determined.

  • PDF

Solution Structure of a Prion Protein: Implications for Infectivity

  • He Liu;Jones, Shauna-Farr;Nikolai Ulyanov;Manuel Llinas;Susan Marqusee;Fred E. Cohen;Stanley B. Prusiner;Thomas L. James
    • 한국자기공명학회논문지
    • /
    • 제2권2호
    • /
    • pp.85-105
    • /
    • 1998
  • Prions cause neurodegenerative diseases in animals and humans. The scrapie prion protein (PrPSc) is the major-possibly only-component of the infectious prion and is generated from the cellular isoform (PrPC) by a conformational change. Limited proteolysis of PrPSc produces an polypeptide comprised primarily of residues 90 to 231, which retains infectivity. The three-dimensional structure of rPrP(90-231), a recombinant protein resembling PrPC with the Syrian hamster (SHa) sequence, was solved using multidimensional NMR. Low-resolution structures of rPrP(90-231), synthetic peptides up to 56 residues, a longer (29-231, full-length) protein with SHa sequence, and a short here further structure refinement of rPrP(90-231) and dynamic features of the protein. Consideration of these features in the context of published data suggests regions of conformational heterogeneity, structural elements involved in the PrPC\longrightarrowPrPSc transformation, and possible structural features related to a species barrier to transmission of prion diseases.

  • PDF