• Title/Summary/Keyword: protein structure prediction

Search Result 105, Processing Time 0.035 seconds

Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein

  • Kim, Won-Je;Rhee, Jin-Kyu;Yi, Jong-Jae;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.36-40
    • /
    • 2014
  • Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.

Prediction of Protein Secondary Structure Content Using Amino Acid Composition and Evolutionary Information

  • Lee, So-Young;Lee, Byung-Chul;Kim, Dong-Sup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • There have been many attempts to predict the secondary structure content of a protein from its primary sequence, which serves as the first step in a series of bioinformatics processes to gain knowledge of the structure and function of a protein. Most of them assumed that prediction relying on the information of the amino acid composition of a protein can be successful. Several approaches expanded the amount of information by including the pair amino acid composition of two adjacent residues. Recent methods achieved a remarkable improvement in prediction accuracy by using this expanded composition information. The overall average errors of two successful methods were 6.1% and 3.4%. This work was motivated by the observation that evolutionarily related proteins share the similar structure. After manipulating the values of the frequency matrix obtained by running PSI-BLAST, inputs of an artificial neural network were constructed by taking the ratio of the amino acid composition of the evolutionarily related proteins with a query protein to the background probability. Although we did not utilize the expanded composition information of amino acid pairs, we obtained the comparable accuracy, with the overall average error being 3.6%.

  • PDF

Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis

  • Abu Saim Mohammad, Saikat
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.25.1-25.12
    • /
    • 2023
  • Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures (단백질 이차 구조 예측을 위한 합성곱 신경망의 구조)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.728-733
    • /
    • 2018
  • Deep learning has been actively studied for predicting protein secondary structure based only on the sequence information of the amino acids constituting the protein. In this paper, we compared the performances of the convolutional neural networks of various structures to predict the protein secondary structure. To investigate the optimal depth of the layer of neural network for the prediction of protein secondary structure, the performance according to the number of layers was investigated. We also applied the structure of GoogLeNet and ResNet which constitute building blocks of many image classification methods. These methods extract various features from input data, and smooth the gradient transmission in the learning process even using the deep layer. These architectures of convolutional neural networks were modified to suit the characteristics of protein data to improve performance.

Simulation Methods for Prediction of Membrane Protein Structure

  • Son, Hyeon-S.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.10-10
    • /
    • 1998
  • IMPs are important to cells in functions such as transport, energy transduction and signalling. Three dimensional molecular structures of such proteins at atomic level are needed to understand such processes. Prediction of such structures (and functions) is necessary especially because there are only a small number of membrane protein structures determined in atomic resolution.(omitted)

  • PDF

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

A QUADRATIC APPROXIMATION FOR PROTEIN SEQUENCE TO STRUCTURE MAPPING

  • Oh, Se-Young;Yun, Jae-Heon;Chung, Sei-Young
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.155-164
    • /
    • 2003
  • A method is proposed to predict the distances between given residue pairs (between C$\sub$${\alpha}$/ atoms) of a protein using a sequence to structure mapping by indefinite quadratic approximation. The prediction technique requires a data fitting in three dimensional space with coordinates of the residues of known structured proteins and leads to a numerical ref resentation of 20 amino acids by minimizing a large least norm iteratively. These approximations are used in distance prediction for given residue pairs. Some computational experience on a test set of small proteins from Brookhaven Protein Data Bank are given.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Theoretical Investigations on Structure and Function of Human Homologue hABH4 of E.coli ALKB4

  • Shankaracharya, Shankaracharya;Das, Saibal;Prasad, Dinesh;Vidyarthi, Ambarish Sharan
    • Interdisciplinary Bio Central
    • /
    • v.2 no.3
    • /
    • pp.8.1-8.5
    • /
    • 2010
  • Introduction: Recently identified human homologues of ALKB protein have shown the activity of DNA damaging drugs, used for cancer therapy. Bioinformatics study of hABH2 and hABH3 had led to the discovery of a novel DNA repair mechanism. Very little is known about structure and function of hABH4, one of the members of this superfamily. Therefore, in present study we are intended to predict its structure and function through various bioinformatics tools. Materials and Methods: Modeling was done with modeler 9v7 to predict the 3D structure of the hABH4 protein. This model was validated with the program Procheck using Ramachandran plot statistics and was submitted to PMDB with ID PM0076284. The 3d2GO server was used to predict the functions. Residues at protein ligand and protein RNA binding sites were predicted with 3dLigandSite and KYG programs respectively. Results and Discussion: 3-D model of hABH4, ALKBH4.B99990003.pdb was predicted and evaluated. Validation result showed that 96.4 % residues lies in favored and additional allowed region of Ramachandran plot. Ligand binding residues prediction showed four Ligand clusters, having 24 ligands in cluster 1. Importantly, conserved pattern of Glu196-X-Pro198- Xn-His254 in the functional domain was detected. DNA and RNA binding sites were also predicted in the model. Conclusion and Prospects: The predicted and validated model of human homologue hABH4 resulted from this study may unveil the mechanism of DNA damage repair in human and accelerate the research on designing of appropriate inhibitors aiding in chemotherapy and cancer related diseases.