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Abstract

There have been many attempts to predict the secondary structure content of a protein from its primary
sequence, which serves as the first step in a series of bioinformatics processes to gain knowledge of the
structure and function of a protein. Most of them assumed that prediction relying on the information of
the amino acid composition of a protein can be successful. Several approaches expanded the amount of
information by including the pair amino acid composition of two adjacent residues. Recent methods
achieved a remarkable improvement in prediction accuracy by using this expanded composition
information. The overall average errors of two successful methods were 6.1% and 3.4%. This work was
motivated by the observation that evolutionarily related proteins share the similar structure. After
manipulating the values of the frequency matrix obtained by running PSI-BLAST, inputs of an artificial
neural network were constructed by taking the ratio of the amino acid composition of the evolutionarily
related proteins with a query protein to the background probability. Although we did not utilize the
expanded composition information of amino acid pairs, we obtained the comparable accuracy, with the

overall average error being 3.6%.

1. Introduction eight secondary structure types: a-helix, -strand,
B-bridge, 3-turn helix, n-helix, hydrogen-bonded

Protein secondary structure content is the turn, bend, and random coil.
proportion of each secondary structure of a Knowing the secondary structure content of a
protein. Formally, it is defined as the ratio of the protein is often the first step towards getting more
number of residues in a certain secondary detailed knowledge on its structure and function.
structure to the number of total residues of a However, the results of experiments had not been
protein. In this work, we employed the sufficiently accurate [7].
conventional classification by DSSP [1], i.e., the Among the early attempts to predict the
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secondary structure content, notable prediction
methods were the multiple linear regression
approach [2] and the artificial neural network
approach [3]. In these methods, it is assumed that
the information of the amino acid composition,
{P(A), P(C), P(D), ..., P(Y)}, where A, C,
D, ..., and Y represent the single-letter codes of
twenty amino acids, is enough to build a
successful predictor.

Liu and Chou [4] expended the idea and
introduced the concept of the coupled amino acid
composition considering two adjacent residues to
of After

expand the amount information.

computing 20 x 20 = 400 pair amino acid
occurrence probabilities ranging from P(A|A) to

P(Y[Y),

P(4]4), P(B|4), P(C|A), P(Y[4)
P(4]B), P(B|B), P(C|B), P(Y|B)
P(4|Y), P(B|Y), P(C|Y), PY|Y)

On the other hand, Chou proposed the concept
of the pair-coupled amino acid composition
considering the two adjacent residues regardless

of their order [5],

P(A4), P(B4), P(C4), P(YA)
P(BB), P(CB), P(YB)
P(YY)

Recently, Cai et al. [6] developed an artificial
neural network approach based on Chou’s pair-
coupled amino acid composition. They achieved a
remarkable improvement in prediction accuracy.

Instead of expanding the number of parameters,

we increased the amount of information of the
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by considering

evolutionarily related proteins with a query

amino acid composition
protein. It is possible to expect better prediction
accuracy with more information. Furthermore,
there is another reason why we expect better
accuracy than other predictors; we use the ratio of
the amino acid compositions to the background

probabilities, those in nature, while those were

solely used as parameters in other methods.

2. Methods

Dataset

The same dataset used in Chou’s and Cai’s
methods [6] were prepared; the training dataset
consists of 244 proteins, of which no more than
35% had homology with one another and the test
dataset of 202 proteins, of which no more than
35% had homology with the others, nor with

those in the training dataset.

Algorithm

Our approach> utilizes the fact that the
evolutionarily related proteins share the similar
structure [8]. Therefore, instead of predicting the
secondary structure content of a query protein
alone, it is possible to increase the prediction
accuracy by predicting those of the evolutionarily
related proteins all together.

In details, we calculate the composition of the
twenty amino acids of the proteins that are
evolutionarily related to a query protein_, which
can be easily done by simple numerical
manipulation of the frequency matrix obtained by

running PSI-BLAST [9]. In addition, instead of



using the amino acid compositions themselves as
the artificial neural network [10] input, we use the
ratio of those of evolutionarily related proteins
with a query protein to the background
probabilities, which are obtained by counting the
number of twenty amino acids of all the
representative proteins in nature.

The computed results for 244 training dataset
were applied to an artificial neural network for
learning. After that, testing on 202 proteins was
performed to estimate the prediction error.

The detailed procedure is as follows;

(1) Calculating the background probability of

N()

, where

each amino acid(X), P, (X) = z

L,
k represents one of 3352 proteins in FSSP, one of
the most-widely used non-redundant protein
structure databases, L, is the length of k-th
protein, and N, (X) is the number of X amino
acid occurrences in the k-th protein.

(2) Getting the frequency matrix, S;(j,X), of the
i-th protein among 244 proteins for training and
202 proteins for validation obtained by running
PSI-BLAST with six iterations, where S;(,X)
represents the composition of X amino acid at the
Jj-th position of the multiple sequence alignment
of all the proteins that are evolutionarily related to
the i-th protein.

(3) The occurrence of amino acid X of all the

proteins that are evolutionarily related to the i-th

L ]
_—ZH 50,5 . To

U
L

1

protein is given by P(X)=

sum up, this equation should be understood as the
summation of all possible occurrences of a

specific amino acid at each position from the
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multiple sequence alignment.

(4) Calculating ( ) as input data of the
(X)

0
artificial neural network with values from
procedure (1) and (3).

(5) Applying an artificial neural network to the
computed results of 244 proteins for training. The
architecture of the neural network, as shown in
Figure 1, consists of twenty input data from
procedure (4), eighty hidden nodes, and eight
output nodes that represent the desired contents of
eight secondary structure types of a protein
derived from the DSSP file of the protein.

(6) Finally, estimating the accuracy of the

predictor by applying it to 202 test proteins.
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Figure 1. Artificial neural network architecture

used in this work

Test criteria
There are two measures for the prediction error;
the average absolute error and the overall average

error. The first one is defined as
202

L 10,—d,|
202 ’

average absolute error of @ structure, and k

¢ _

ef = where € is the

represents one of the test proteins. The predicted



value and the desired composition of ¢
structure in A-th protein are denoted as ©,
andd, , respectively. Another test criterion is the

overall average error, <¢>. It is the mean of

(4
e
eight absolute errors, <e>= Z“’

3. Results

The same tests were performed to compare our
method with previous successful methods, Chou’s
and Cai’s predictors [5, 6]. Thus, two types of
tests were performed: a self-consistency test and
an independent-dataset test.

Before testing error for the test dataset, the self-
consistency test was performed by 244 training
dataset to verify the consistency of training
dataset and the fitness of learning. All of average
absolute errors were less than 10% and the overall
average error was 3.9%, indicating that our
algorithm is consistent and the neural network
was trained appropriately.

Consecutively, to confirm prediction accuracy,
the independent-dataset test was tried by two test
criterions: an average absolute error and an
overall average error. In Figure 2, the average
absolute error of our method for eight protein
secondary structure types, H(a-helix), E(B-strand),
B(B-bridge), G(3-turn  helix),  I(n-helix),
T(hydrogen-bonded turn), S(bend) and C(coil) are
compared with other methods, Chou’s [5] and
Cai’s method [6].

The average absolute errors of our method are
0.085, 0.080, 0.0086, 0.022, 0.00056, 0.027 and
0.04 for H, E, B, G, I, T, S and C, respectively;
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most of them are less than other methods.
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Figure 2. The average absolute errors of the
present method are compared with those of

Chou’s and Cai’s methods.

In the following table, the overall average error

of our method is compared with that of the other

methods.
Method Chou’s Cai’s Present
Error (%) 6.1 34 3.6

The result shows that our method is better than
that of Chou’s method, while it is similar to that
of Cai’s method, the best accurate predictor until
now.

In conclusion, the accuracy of our method,
whose input vectors consist of 20 parameters, is
comparable to the other accurate methods where

input vectors consist of more than 200 parameters.

4. Discussion

The primary experimental method to determine



secondary structure content is the circular
dichroism (CD) spectroscopy [7]. However, it is
well known that the accuracy of CD method is far
from being satisfactory, with the error of roughly
10%. Surprisingly, the accuracy of predicting
secondary structure content in fact exceeds that of
experimental methods, with the error of roughly
3~4%.

In the previous works of secondary structure
content prediction, the most accurate method,
Cai’s predictor, produced very successful result
with the error of 3~4%. Instead of using the
simple composition of twenty amino acids, they
employed the pair-coupled amino acid
composition, which included more than two
hundred parameters.

Here we demonstrate that, when it is combined
with the evolutionary information, the simple
amino acid composition alone is informative
enough to produce a predictor whose prediction
accuracy is comparable to the most accurate
predictors.

Most of average absolute errors of our method
are less than Cai’s method, the best predictor until
now, while those of a-helix and B-strand are more
than his method. We have to analyze the reason
methods the secondary

why his predicted

structure contents of a-helix and p-strand
successfully for the improvement of our method.
By Liu and Chou’s report [4], when they
introduced the concept of coupled amino acid
composition, the prediction errors were reduced
up to about a half of the previous methods that
considered simple amino acid composition. In

other words, they demonstrated that the secondary

structure content was related to the coupling

effects of residues along a sequence which were
not considered in our method. By this fact, we
expect more accurate method when we consider
the coupling effects of residues.

Therefore, we presume that a proper
combination of the concept of pair-coupled amino
acid composition and the evolutionary
information might result in the more accurate

predictor.
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