• Title/Summary/Keyword: protein stability

Search Result 1,074, Processing Time 0.027 seconds

Cross-Reactivity and Digestive Enzyme Stability of Peach, Korean Cherry, and Hot Pepper (복숭아, 앵두, 고추의 교차반응성 및 소화효소안정성)

  • Kim, Eun-Jung;Ko, Yu-Jin;Lee, Gyeong-Ran;Seol, Hui-Gyeong;Kang, Chang-Min;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1487-1492
    • /
    • 2012
  • Peach (Prunus persica) has been recognized as a food allergen for over 20 years. However, there is little information about cross-reactivity with other foods. The aim of this study was to research cross-reactivity of Korean cherry and hot pepper on patients allergic to peach and its stability by digestive enzyme treatment. Peach, Korean cherry, and hot pepper proteins were extracted and separated by Tricine-SDS-PAGE analysis. The protein extracts had a wide range of molecular weight, from 3 kDa to more than 26 kDa, and displayed different patterns of protein bands on Tricine-SDS-PAGE. Peach allergic patients' sera were used to detect the allergenic protein in three samples. Three peach allergic patients' sera reacted strongly with 9 kDa protein of peach, which was the expected lipid transfer protein (LTP) as the major allergen of peach and was detected with anti-LTP1 polyclonal antibody. However, the reactivity of the 23 kDa protein in Korean cherry and hot pepper protein was stronger than that of the 9 kDa protein. The stability of protein extracts on digestive enzyme treatment was examined using simulated gastric fluids (SGF) and simulated intestinal fluids (SIF), in which digestive enzyme stability is one of the characteristics of allergen potentially causing food allergy. Findings confirmed that allergenic proteins in peach, Korean cherry, and hot pepper were not completely digested by SGF and SIF treatments from results of SDS-PAGE analysis. These results confirmed that Korean cherry and hot pepper might cause cross-reactivity in peach allergic patients, and its allergenic proteins have stability against digestive enzymes.

The Soluble Expression of the Human Renin Binding Protein Using Fusion Partners: A Comparison of ubquitin, Thioredoxin, Maltose Binding Protein-and NusA

  • Lee, Chung;Lee, Sun-Gu;Saori Takahashi;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.89-93
    • /
    • 2003
  • human renin binding protein (hRnBp), showing N-acetylglucosamine-2-epimerase activity, was over-expressed in E. coli, but was mainly present as an inclusion body. To improve its solubility and activity, ubiquitin (Ub), thioredoxin (Trx), maltose binding protein (MBP) and NusA, were used as fusion partners. The comparative solubilities of the fusion proteins were, from most to least soluble: NusA, MBP, Trx, Ub. Only the MBP fusion did not significantly reduce the activity of hRnBp, but enhanced the stability. The Origami (DE3), permitting a more oxidative environment for the cytoplasm in E. coli; helped to increase its functional activity.

Development of Protein Drugs by PEGylation Technology (PEGylation 기술을 이용한 단백질 의약품 개발)

  • Na, Dong-Hee
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.293-299
    • /
    • 2011
  • PEGylation, the attachment of polyethylene glycol (PEG) to proteins, is currently main technology for improving efficacy of protein drugs. This technology can prolong the plasma half-life, augment the in vivo stability, and diminish the immunogenicity of therapeutic proteins. Therefore, PEGylated proteins have the enhanced therapeutic efficacy and the reduced undesirable effects versus their native therapeutics. Since the first PEGylated protein product appeared on the market in the early 1990s, currently ten PEGylated protein products have been launched. These marketed drug products have proved the applicability and safety of the PEGylation technology. This review presents overview of PEGylation technology and addresses characteristics of PEGylation methods applied for the development of several protein drugs.

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A;Suh, Yoo-Hun
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.656-663
    • /
    • 2010
  • Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

Change of Physical Properties and Extraction of Sesame Meal Protein by Gamma Irradiation (방사선 조사에 의한 참깨박 단백질의 용출 및 기능성 변화)

  • Cho, Young-Je;Kim, Jin-Ku;Cha, Won-Seup;Park, Joon-Hee;Oh, Sang-Lyong;Byun, Myung-Woo;Chun, Sung-Sook;Kim, Soon-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.924-930
    • /
    • 1999
  • To extract insoluble proteins and improve physical properties of proteins, the sesame meal proteins was irradiated with $5\;kGy{\sim}20\;kGy$ at room temperature. The highest extraction rate of sesame meal protein was showed at irradiation dose of 5 kGy. The foaming capacity, foaming stability, emulsion capacity and emulsion stability of gamma irradiated sesame meal protein (GISP) were all increased as compared to those of the non-irradiated protein. Water absorption capacity of GISP was similar to that of non-irradiated protein and oil absorption capacity of GISP was decreased after treatment by gamma irradiation.

  • PDF

Functionality Changes of Rapeseed Protein upon Proteolysis (유채단백질의 Proteolysis에 의한 기능성 변화)

  • Kim, Chung-Hee;Kim, Hyo-Sun;Lee, Jang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 1992
  • purified rapeseed(Brassica napus var. Youngsan) protein was hydrolyzed by pronase. The hyrolysate protein was investigated for the some physicochemical and functional properties. UV and intrinsic fluorescence spectra of the hydrolysate showed the maximum absorption at 274nm and 360nm respectively. Intensity of yellow color decreased in the process of hydrolysis and the surface hydrophobicity decreased up to fourfold. The main bands of hydrolysate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) were observed at 14,000 to 12,000 dalton molecular weight. Solubilities of hydrolyzed protein increased by 10~15% compared to those of unhydrolyzed protein at acidic pH. In the hydrolysate, while absorption of both water and oil, foam expansion and emulsion stability were increased, absolute viscosity, heat coagulation, calcium coagulation, foam stability and emulsion activity were decreased.

  • PDF

Structural Bioinformatics Analysis of Disease-related Mutations

  • Park, Seong-Jin;Oh, Sang-Ho;Park, Dae-Ui;Bhak, Jong
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.142-146
    • /
    • 2008
  • In order to understand the protein functions that are related to disease, it is important to detect the correlation between amino acid mutations and disease. Many mutation studies about disease-related proteins have been carried out through molecular biology techniques, such as vector design, protein engineering, and protein crystallization. However, experimental protein mutation studies are time-consuming, be it in vivo or in vitro. We therefore performed a bioinformatic analysis of known disease-related mutations and their protein structure changes in order to analyze the correlation between mutation and disease. For this study, we selected 111 diseases that were related to 175 proteins from the PDB database and 710 mutations that were found in the protein structures. The mutations were acquired from the Human Gene Mutation Database (HGMD). We selected point mutations, excluding only insertions or deletions, for detecting structural changes. To detect a structural change by mutation, we analyzed not only the structural properties (distance of pocket and mutation, pocket size, surface size, and stability), but also the physico-chemical properties (weight, instability, isoelectric point (IEP), and GRAVY score) for the 710 mutations. We detected that the distance between the pocket and disease-related mutation lay within $20\;{\AA}$ (98.5%, 700 proteins). We found that there was no significant correlation between structural stability and disease-causing mutations or between hydrophobicity changes and critical mutations. For large-scale mutational analysis of disease-causing mutations, our bioinformatics approach, using 710 structural mutations, called "Structural Mutatomics," can help researchers to detect disease-specific mutations and to understand the biological functions of disease-related proteins.

Role of Plant Hormones in the Senescing Detached Leaves of Phaseolus vulgaris (강남콩 잎의 노화에 있어서 식물 호르몬의 역할)

  • 이동희;서영희;김영상
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.297-308
    • /
    • 1997
  • Role of plant hormones on the leaf senescence of Phaseolus vulgaris were investigated by measuring the disassembly of chlorophyll-protein complexes in detached leaves treated with NAA, GA$_{3}$ , or BA. The loss of chlorophyll that was characteristic of leaf senescence induced disassembly of chlorophyll-protein complexed. During dark-induced senescence, PSI complex was rapidly degraded after the early stage, whereas RC-Core3 was slightly increased until the middle stage and slowly decreased thereafter. And gradual degradation of trimeric LCHII progressed after the late stage of senescence. Exogenous application of NAA and GA$_{3}$ had little or no effect in protecting disassembly of chlorophyll-protein complexes during leaf senescence compared to control. However exogenous BA application strongly leaves. In the simultaneous treatment of plant hormones and light, BA application under illumination of light was most effective in the stability of chlorophyll-protein complexes, particularly PSI, LHCII, RC-Core2, RC-Core3 and SC-1. these results suggest, therefore, that simultaneous application of BA and light induced synergistic effect on the stability off chlorophyll-protein complexes during leaf senescence.

  • PDF

Preparation and Evaluation of Microcapsule/Emulsions via the Electroatatic Interations of Polysaccharide and Protein (식물 유래 다당류/단백질 기반 마이크로캡슐/에멀젼 제조 및 평가)

  • Choi, Yu Ri;Lim, Hyung Jun;Lee, John Hwan;Oh, Seong Geun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • A novel microcapsule/emulsions for cosmetics was studied. Our present studies demonstrate that the biopolymer-stabilized microemulsion composed of polysaccharide and protein can encapsulate and stabilize remarkably coenzyme-Q10 (Q10). Polysaccharide and protein complex were incorporated in the microcapsule in order to reinforce the physical strength of the microspheres. We compared the long-term stability of the activity of Q10 in biopolymer-stabilized microemulsion. There was no noticeable negative effect on the activity of Q10. Optical microscope (OM) and transmission electron microscope (TEM) showed that microcapsules were spherical and had a smooth surface. Consequently, the polysaccharide/protein emulsion produced in this study may be beneficial in improving the emulsion stability and the protection capability of labile substances.

The effects of PPARβ/δ overexpression on PGC-1α mRNA and protein stability after accute endurance exercise in mice skeletal muscle (생쥐의 골격근에 PPARβ/δ 과발현이 1회 지구성 운동 후 안정시 PGC-1α mRNA와 단백질 안정성에 미치는 영향)

  • Koh, Jin-Ho;Jung, Su Ryun;Kim, Ki-Jin
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.4
    • /
    • pp.507-516
    • /
    • 2016
  • The purpose of this study is to identify the effects of PPARβ/δ over-expression on PGC-1α mRNA and protein stability after single bout of swimming exercise in mice skeletal muscle. Empty vector (EV) or PPARβ/δ was over-expressed in tibialis anterior(TA) using electroporation(EPO) technique to compare with non-treatment muscle(control; Con). TA muscles were dissected at 0h, 24h or 54h after termination of exercise. PGC-1α mRNA in Con, EV and PPARβ/δ over-expressed muscles were increased 6.8 fold (p<.001), 6.2 fold(p<.001) and 7.1 fold(p<.001), respectively, than sedentary(Sed) group at 0h after exercise and then reverted to Sed group levels at 24h and 54h after termination of exercise. PGC-1α and PGC-1α ubiquitination in EV treated muscles were increased 2.2 fold and 1.74 fold, respectively, than Sed group at 24h after termination of exercise, and then reverted to Sed group levels at 54h after termination of exercise. PGC-1α in PPARβ/δ over-expressed muscles at 24h and 54h after termination of exercise were increased 2.5 fold and 2.2 fold, respectively, than Sed group, but PGC-1α ubiquitination was not increased at 24h and 54h after termination of exercise. Our results indicate that PPARβ/δ over-expression does not increase PGC-1α mRNA stability, but increase PGC-1α protein stability through post-translation mechanism after termination of exercise.