• Title/Summary/Keyword: protein sensor

Search Result 141, Processing Time 0.036 seconds

Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction (하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.

Comparison of Enzymatic Activity and Cleavage Characteristics of Trypsin Immobilized by Covalent Conjugation and Affinity Interaction (공유결합과 친화력결합에 의한 고정화 Trypsin의 효소역가와 절단특성 비교)

  • Jang, Dae-Ho;Seong, Gi-Hun;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • We investigated the effects of immobilization chemistry on the yield of immobilization and the bioactivity of the immobilized enzymes. Trypsin as a model protein and macroporous polymer beads(Toyopearl AF 650M, Tosho Co., Japan) was used as a model matrix. Four methods were used to immobilize trypsin; covalent conjugation by reductive amination(at pH 10.0 and pH 4.0) and affinity interaction via streptavidin-biotin, and double-affinity interaction via biotin-streptavidin-biotin system. The covalent conjugation immobilized $3{\sim}4$ mg/ml-gel, ca. 3-fold higher than the affinity method. However, the specific activity of the covalently(pH 10.0) and affinity-immobilized trypsin(via streptavidin-biotin) are ca. 37% and 50%, respectively, of that of the soluble enzyme(on the low-molecular-weight BAPNA substrate). When the molecular size of a substrate increased, the affinity-immobilized trypsin showed higher clavage activity on insulin and BSA. This result seemed to indicate the streptavidin-biotin system allowed more steric flexibility of the immobilized trypsin in its interaction with a substrate molecule. To confirm this, we studied the molecular flexibility of immobilized trypsin using quartz crystal microbalance-dissipation. Self-assembled monolayers were formed on the Q-sensor surface by aminoalkanethiols, and gultaraldehyde was attached to the SAMs. Trypsin was immobilized in two ways: reductive amination(at pH 10.0) and the streptavidin-biotin system. The dissipation shift of the affinity-immobilized trypsin was $0.8{\times}10^{-6}$, whereas that of the covalently attached enzyme was almost zero. This result confirmed that the streptavidin-biotin system allowed higher molecular flexibility. These results suggested that the bioactivity of the immobilized enzyme be strongly dependent on its molecular flexibility.

Fabrication, Estimation and Trypsin Digestion Experiment of the Thermally Isolated Micro Teactor for Bio-chemical Reaction

  • Sim, Tae-Seok;Kim, Dae-Weon;Kim, Eun-Mi;Joo, Hwang-Soo;Lee, Kook-Nyung;Kim, Byung-Gee;Kim, Yong-Hyup;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.149-158
    • /
    • 2005
  • This paper describes design, fabrication, and application of the silicon based temperature controllable micro reactor. In order to achieve fast temperature variation and low energy consumption, reaction chamber of the micro reactor was thermally isolated by etching the highly conductive silicon around the reaction chamber. Compared with the model not having thermally isolated structure, the thermally isolated micro reactor showed enhanced thermal performances such as fast temperature variation and low energy consumption. The performance enhancements of the micro reactor due to etched holes were verified by thermal experiment and numerical analysis. Regarding to 42 percents reduction of the thermal mass achieved by the etched holes, approximately 4 times faster thermal variation and 5 times smaller energy consumption were acquired. The total size of the fabricated micro reactor was $37{\times}30{\times}1mm^{3}$. Microchannel and reaction chamber were formed on the silicon substrate. The openings of channel and chamber were covered by the glass substrate. The Pt electrodes for heater and sensor are fabricated on the backside of silicon substrate below the reaction chamber. The dimension of channel cross section was $200{\times}100{\mu}m^{2}$. The volume of reaction chamber was $4{\mu}l$. The temperature of the micro reactor was controlled and measured simultaneously with NI DAQ PCI-MIO-16E-l board and LabVIEW program. Finally, the fabricated micro reactor and the temperature control system were applied to the thermal denaturation and the trypsin digestion of protein. BSA(bovine serum albumin) was chosen for the test sample. It was successfully shown that BSA was successfully denatured at $75^{\circ}C$ for 1 min and digested by trypsin at $37^{\circ}C$ for 10 min.

Determination of Biogenic Amines using an Amperometric Biosensor with a Carbon Nanotube Electrode and Enzyme Reactor (Carbon Nanotube 전극과 효소반응기로 구성된 Amperometric Biosensor를 이용한 Biogenic Amines 검출)

  • Kim, Jong-Won;Jeon, Yeon-Hee;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.735-742
    • /
    • 2010
  • Biogenic amines are synthesized by microbial decarboxylation for the putrefaction or fermentation of foods containing protein. Although biogenic amines such as histamine, tyramine, and putrescine are required for many physiological functions in humans and animals, consumption of high amounts of biogenic amines can cause toxicological effects, including serious gastrointestinal, cutaneous, hemodynamic, and neurological symptoms. In this study, a novel amperometric biosensor wasdeveloped to detect biogenic amines. The biosensor consisted of a working electrode, a reference electrode, a counter electrode, an enzyme reactor with immobilized diamine oxidase, an injector, a peristaltic pump and a potentiostat. A working electrode was fabricated with a glassy carbon electrode (GCE) by coating functionalized multi-walled carbon nanotubes (MWCNT-$NH_2$) and by electrodepositing Prussian blue (PB) to enhance electrical conductivity. A sensor system with PB/MWCNT-$NH_2$/GCE showed linearity in the range of $0.5 {\mu}M{\sim}100 {\mu}M$ hydrogen peroxide with a detection limit of $0.5 {\mu}M$. The responses for tyramine, 2-phenylethylamine, and tryptamine were 95%, 75%, and 70% compared to that of histamine, respectively. These results imply that the biosensor system can be applied to the quantitative measurement of biogenic amines.

A Study of Constructing Automatic Display System for Effective Management Based on The Influence of Temperature on the Mushroom (온도가 버섯에 미치는 영향을 바탕으로 효율적 관리를 위한 자동 표식 시스템 구축에 관한 연구)

  • Xu, Chen-Lin;Lee, Hyun-Chang;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2603-2608
    • /
    • 2015
  • Mushroom is a high in protein, low calorie food and has dietary fiber, vitamins, iron and minerals such as zinc. It is called that mushroom is one of the biggest concerns for healthy foods. When we make the artificial cultivation of mushroom, one of the greatest influence element is temperature. In this regard, farmers passively measure temperatures in the greenhouse as inaccurate way such as by the naked eyes. In this paper, we constructed a display system in order to improve the efficiency of manual management of temperature based on the influence of temperature on the mushroom. In related to the methods of mushroom cultivation, the recent technology apply the new technology such as sensors and IT convergence services. And then cultivating mushroom is managed effectively. In this paper, we implement an automatic display system for sensing data. By using this function, farmers could effectively manage environment needed to be grown mushroom, and anticipate the improvement of sales by increasing quality of mushrooms as well.

Anti-Obesity Effect of By-Product from Soybean on Mouse Fed a High Fat Diet (고지방 식이로 유도된 비만 마우스에서 대두 부산물인 순물과 침지수의 항비만 효과)

  • Park, Young Mi;Lim, Jae Hwan;Seo, Eul Won
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.168-177
    • /
    • 2015
  • Here we study the anti-obesity effects of by-product from soybean on mouse fed high fat diet. The body weight gain, visceral and subcutaneous adipose tissue weight, liver and epididymal adipose tissue weight in freeze-dried soybean-soaking-water (SSW) powder fed group showed lower level than those in high fat diet (HFD) group by determining with weight measuring and histological methods. Also, histological analyses of the liver and fat tissues of SSW grouped mice revealed significantly less number of lipid droplets formation and smaller size of adipocytes compared to the HFD group. Moreover, the levels of total serum cholesterol, LDL-cholesterol and the atherogenic index were decreased in the SSW groups. Especially, in SSW group, the levels of phosphorylation of two lipid oxidation enzymes, adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylasse (ACC) were elevated hence that may activate fatty acid oxidation. But AST and ALT levels were not changed in blood. By micro-CT analysis of abdomen, SSW groups significantly showed a tendency to decrease visceral and subcutaneous fats as well as fat-deposited areas compared to HFD group. Taken together, we suggest that soybean soaking water has a function in ameliorating obesity through inhibiting lipid synthesis as well as stimulating fatty acid oxidation.

Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo

  • Lin, Ching-Ling;Tsai, Ming-Lin;Chen, Yu-hsin;Liu, Wei-Ni;Lin, Chun-Yu;Hsu, Kai-Wen;Huang, Chien-Yu;Chang, Yu-Jia;Wei, Po-Li;Chen, Shu-Huey;Huang, Li-Chi;Lee, Chia-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.551-561
    • /
    • 2021
  • Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA geneedited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Quality Characteristics of Jochung Containing Various Level of Letinus edodes Powder (표고버섯 가루를 이용한 조청의 품질 특성)

  • Park, Jung-Suk;Na, Hwan-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.768-775
    • /
    • 2005
  • Lentinus edodes powder was added at 1-3%(w/w) to improve functional properties of jocheong. Content of crude protein, ash, crude lipids, total mineral, free sugar and reducing sugar increased with increasing amount of L. edodes powder, while viscosity and solid and carbohydrate contents decreased. Through amino acid analysis, 17 amino acids were identified and quantified, glutamic acid being the major amino acid. No significant differences were observed in fatty acid composition and pH between control and L. edodes powder-added jocheong. Addition of mushroom powder in jocheong decreased lightness, yellowness and redness in Hunter's color value. Sensor score of jucheong containing 1% of L. edodes powder was similar to that of control. Results showed jocheong containing less than 2% L. edodes powder gave highest scores in quality characteristics and sensory evaluation.