• 제목/요약/키워드: protein secretion

검색결과 813건 처리시간 0.027초

수유 기간별 모유 중 단백질 분비량과 영아의 단백질 섭취량 (The Amount of the Protein Secretion of Human Milk and the Protein Intake of Infant during Breast-feeding)

  • 이영남
    • Journal of Nutrition and Health
    • /
    • 제28권8호
    • /
    • pp.782-790
    • /
    • 1995
  • The longitudinal changes in protein secretion from 27 lactating women(primiparae = 10, multiparae=17) and protein intake of infants have been studied from 0.5 to 6 months postpartum in Chungju and Anseong area. The protein contents o breast milk in primiparae appeared significantly higher than in multipaae at 0.5 and 1 month postpartum. The protein secretion of primiparae and multiparae was not significantly different. In breast-feeding period, there was a tendency that protein secretion from 0.5 to 2 months postpartum was higher than thereafter. Average protein intake of boys from milk from 0.5 to 6 months postpartum was significantly higher than that of girls(p<0.05), because volume of milk intake of boys was much more than that of girls. In the amount of protein intake per infant weight, there was no significant difference between boys and girls. Protein intakes per infant weight decreased during lactation. Mean energy consumption of lactating women was 2,327㎉/day, which was 93.1% of recommended energy allowance for Koreans. Mean dietary protein consumption of lactating women was 81g/day, which was 101.3% of recemmended protein allowance for Koreans. Energy ratio of carbohydrate : protein : lipid was appeared to 68.8 : 13.9 : 17.3.

  • PDF

생쥐 췌조직내 Protein Methylase에 대한 자율신경계약물의 영향 (Effect of Adrenergic and Cholinergic Agents on the Activities of Protein Methylases in Pancreatic Tissue)

  • 유태무;박선미;이향우
    • 약학회지
    • /
    • 제35권4호
    • /
    • pp.341-347
    • /
    • 1991
  • It was reported that protein carboxymethylation is involved in amylase secretion of parotid gland by isoproterenot. It was also suggested that a small part of the total cellular protein carboxymethylation is directly involved in pancreatic enzyme secretion. On the contrary, other authors reported that there is no relationship between protein carboxymethylation and secretion in pancreas and parotid gland. In recent study, it was proposed that a methyl acceptor protein plays a limited modulatory role in the coupling of cytosolic $Ca^{++}$ accumulation and exocytosis. In this study, the effects of cholinergic and adrenergic agents on the activities of protein methylase II in pancreatic tissues were examined to test the relationship between protein methylation and pancreatic secretion. The results are as follows. The activity of amylase was slightly increased at the concentration of $10^{-5}$ M of isoproterenol and norepinephrine. The activities of protein methylase I and II were decreased by isoproterenol and norepinephrine, but the activities of protein methylase III were hardly changed. The cholinergic stimulants acetylcholine and carbachol at a concentration of $10^{-5}$ M increased the activities of protein methylase I and decreased the activitiy of protein methylase III compared with control.

  • PDF

Bacillus subtilis의 단백질 분비기구 SecY의 유전자 수준의 조절이 단백질 분비에 미치는 영향

  • 김상숙;김순옥;서주원
    • 한국미생물·생명공학회지
    • /
    • 제24권4호
    • /
    • pp.408-414
    • /
    • 1996
  • The SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane, and has been known to be rate-limiting factor of secretion in Escherichia coli. In order to study the extracellular protein secretion in Gram-positive microorganism, we have, constructed strains harboring more than one copy of the gene for SecY. Firstly, the gene, for B. subtilis SecY and its promoter region was subcloned into pDH32 and the chimeric vector was inserted into amyE locus by homologous recombination. Secondly, low copy number vector, pCED6, was also used for subcloning the secY gene and for constructing a strain which harbors several copies of secY. The KH1 cell which harbor two copies of secY on the chromosome excreted more extracellular proteins than the wild type PB2. Moreover, the KH2 cells which harbor several copies of secY in pCED6 vector excreted more extracellular proteins than the KH1 cells. Here, we found that the capacity of protein secretion is partly controlled by the number of secY and it is suggested that SecY has also an important role in protein secretion in B. subtilis, a gram positive microorganism, as like in E. coli. This will promote the use of B. subtilis as a host for the expression of useful foreign gene and excretion of precious proteins.

  • PDF

Serratia marcescens nuclease의 escherichia coli에서의 분비 (Secretion of the cloned serratia marcescens nuclease in escherichia coli)

  • 신용철;이상열;김기석
    • 미생물학회지
    • /
    • 제28권4호
    • /
    • pp.297-303
    • /
    • 1990
  • Secretion of Serratia marcescens nuclease by E. coli harboring pNUC4 was investigated. 29.2, 54.2 and 16.6% of total nuclease were observed in culture medium, periplasm, and cytoplasm of E. coli, respectively. To investigate the secretion mechanism of Serratia nuclease by E. coli, secretion kinetics of nuclease was examined in the presences of sodium azide, and energy metabolism inhibitor; procaine, an exoprotein processing inhibitor; and chloramphenicol, a protein synthesis inhibitor. In the presence of sodium azide, periplasmic unclease was gradually decreased and the extracellular nyclease was linearly increased according to the incubation time. Similar results were obtained in presences of procaine and chloramphenicol. From these results, we concluded that two transport processes are involved in nuclease secretion: secretion of nuclease through the inner membrane is occurred by an energy-dependent process and probably requiring precusor processing: secretion of nuclease through outer membrane does not require energy, de novo protein synthesis, and precursor processing.

  • PDF

Mesangial 세포에서 고포도당에 의한 insulin-like growth factor의 분비조절기전에 관한 연구: cAMP와의 관련성 (The regulatory mechanism of insulin like growth factor secretion by high glucose in mesangial cell: involvement of cAMP)

  • 허정선;강창원;한호재;박수현
    • 대한수의학회지
    • /
    • 제43권4호
    • /
    • pp.563-571
    • /
    • 2003
  • Dysfunction of mesangial cells has been contributed to the onset of diabetic nephropathy. Insulin like growth factors (IGFs) are also implicated in the pathogenesis of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I and IGF-II secretion in the mesangial cells. Furthermore, the relationship between cAMP and high glucose on the secretion of IGFs was not elucidated. Thus, we examined the mechanisms by which high glucose regulates secretion of IGFs in mesangial cells. Glucose increased IGF-I secretion in a time- (>8 hr) and dose- (>15 mM) dependent manner (p<0.05). Stimulatory effect of high glucose on IGF-I secretion is predominantly observed in 25 mM glucose (high glucose), while 25 mM glucose did not affect cell viability and lactate dehydrogenase release. High glucose also increased IGF-II secretion. The increase of IGF-I and IGF-II secretion is not mediated by osmotic effect, since mannitol and L-glucose did not affect IGF-I and IGF-II secretion. 8-Br-cAMP mimicked high glucose-induced secretion of IGF-I and IGF-II. High glucose-induced stimulation of IGF-I and IGF-II secretion was blocked not by pertussis toxin but by SQ 22536 (adenylate cyclase inhibitor). Rp-cAMP (cAMP antagonist), and myristoylated protein kinase A (PKA) inhibitor amide 14-22 (protein kinase A inhibitor). These results suggest that cAMP/PKA pathways independent of Gi protein may mediate high glucose-induced increase of IGF-I and IGF-II secretion in mesangial cells. Indeed, glucose (>15 mM glucose) increased cAMP formation. In conclusion, high glucose stimulates IGF-I and IGF-II secretion via cAMP/PKA pathway in mesangial cells.

Apolar growth of Neurospora crassa leads to increased secretion of extracellular proteins

  • Lee, In-Hyung;Rodney G. Walline;Michael Plamann
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2000년도 Proceedings of 2000 KSAM International Symposium and Spring Meeting
    • /
    • pp.78-89
    • /
    • 2000
  • Protein secretion in filamentous fungi has been shown to be restricted to actively growing hyphal tips. To determine whether an increase in the amount of growing surface area of a fungus can lead to an increase in the amount of protein secretion, we examined secretion in a temperature-sensitive Neurospora crassa mcb mutant that shows a loss of growth polarity when incubated at restrictive-temperature. Incubation of the mcb mutant at restrictive-temperature results in a three- to five-fold increase in the level of extracellular protein and a 20- fold increase in carboxymethyl cellulase activity relative to a wild-type strain. A mutation in the cr-l gene has been shown previously to suppress the apolar growth phenotype of the mcb mutant, and we find that the level of extracellular protein produced by a mcb; cr-l double mutant was reduced to that of the wild-type control. Immunolocalization of a secreted endoglucanase revealed that proteins are secreted mainly at hyphal tips in hyphae exhibiting polar growth and over the entire surface area of bulbous regions of hyphae that are produced following a shift of the mcb mutant to restrictive-temperature. These results support the hypothesis that secretion of extracellular protein by a filamentous fungus can be significantly increased by mutations that alter growth polarity.

  • PDF

효모의 증식과 단백질 분비에 대한 빛의 효과 (The effect of light on baker's yeast cell growth and protein secretion)

  • 박돈희;이기영
    • 미생물학회지
    • /
    • 제26권1호
    • /
    • pp.67-71
    • /
    • 1988
  • It has been observed that white loght can suppress both cell growth and protein secretion in Baker's yeast. This effect was explored in batch liquid fermentations. Possible applications of this phenomenon are (a) use as a tool for pre-concentrating excreted enzymes prior to subsequent purification and (b) an engineering variable for regulation yeast fermentations.

  • PDF

Analysis of Secretion Behavior of Human Lysozyme from Recombinant Saccharomyces cerevisiae

  • MARTEN, MARK R.;NAM SOO HAN;JIN BYUNG PARK;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권5호
    • /
    • pp.576-581
    • /
    • 1999
  • Effects of signal sequences, protein sizes and dissolved oxygen on the secretion of human lysozyme from a recombinant yeast were experimentally characterized. The systems consisted of Saccharomyces cerevisiae host SEY2102 that was transformed with two different plasmids. These plasmids were identical with an exception to the plasmid pMC614, which contained the native yeast MFα1 sequence and the plasmid pMC632 with the non-native rat α-amylase signal sequence. The expression of human lysozyme was controlled by the ADHI promoter. The native yeast MFαl signal sequence was more efficient than the non-native rat α-amylase signal sequence in directing the secretion of human lysozyme. Lysozyme secreted with the α-amylase signal was retained inside the cells and released to the medium very slowly, thereby causing a lower cell growth rate and a decreased product secretion rate. Lysozyme was secreted more efficiently than invertase, which is an order of magnitude bigger in molecular size compared to lysozyme, which was under the direction of the MFαl signal sequence, suggesting that protein sizes may affect the secretion efficiency. When expressed in anaerobic conditions in the medium where the ADHI promoter was derepressed, the amount of lysozyme secreted was about twice higher than that of the aerobic culture. However, the secretion rates were identical. This result showed that the dissolved oxygen level may affect the efficiency of protein secretion only, and not the secretion rate of the product protein.

  • PDF

Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered Saccharomyces cerevisiae Fermenting Cellobiose

  • Lee, Won-Heong;Jin, Yong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.1035-1043
    • /
    • 2021
  • Although engineered Saccharomyces cerevisiae fermenting cellobiose is useful for the production of biofuels from cellulosic biomass, cellodextrin accumulation is one of the main problems reducing ethanol yield and productivity in cellobiose fermentation with S. cerevisiae expressing cellodextrin transporter (CDT) and intracellular β-glucosidase (GH1-1). In this study, we investigated the reason for the cellodextrin accumulation and how to alleviate its formation during cellobiose fermentation using engineered S. cerevisiae fermenting cellobiose. From the series of cellobiose fermentation using S. cerevisiae expressing only GH1-1 under several culture conditions, it was discovered that small amounts of GH1-1 were secreted and cellodextrin was generated through trans-glycosylation activity of the secreted GH1-1. As GH1-1 does not have a secretion signal peptide, non-conventional protein secretion might facilitate the secretion of GH1-1. In cellobiose fermentations with S. cerevisiae expressing only GH1-1, knockout of TLG2 gene involved in non-conventional protein secretion pathway significantly delayed cellodextrin formation by reducing the secretion of GH1-1 by more than 50%. However, in cellobiose fermentations with S. cerevisiae expressing both GH1-1 and CDT-1, TLG2 knockout did not show a significant effect on cellodextrin formation, although secretion of GH1-1 was reduced by more than 40%. These results suggest that the development of new intracellular β-glucosidase, not influenced by non-conventional protein secretion, is required for better cellobiose fermentation performances of engineered S. cerevisiae fermenting cellobiose.

Salmonella enterica serovar Typhimurium에서 Type III 분비장치의 표적단백질들의 분비신호 확인 및 Type III 분비장치를 이용한 Secretion Vector의 개발 (Identification of Secretion Signals of Target Proteins in Salmonella enterica serovar Typhimurium and Construction of Secretion Vector using this Signal)

  • 최혁진;엄준호;조정아;이선;이경미;이인수;박용근
    • 미생물학회지
    • /
    • 제36권4호
    • /
    • pp.254-258
    • /
    • 2000
  • 소장의 상피세포내로 세균 세포가 들어가는 과정(invasion)은 Salmonella의 감염에서 중요한 단계이다. invasion은 Salmonella type III 분비장치에 의해 분비되는 단백질들에 의해 유도된다. type III 분비단백질들은 특이하게, 일반적인 분비단백질들이 가지는 N-말단 분비 신호 펩타이드를 가지고 있지 않는 것을 알려져 있다. Yersinia에서의 최근 연구에서 type III 분비장치에 의해 인지되는 분비신호는 분비 단백질을 암호화하는 mRNA의 5'말단부의가 형성하는 2차 구조에 있을 것이라는 보고가 있다. 본 연구에서는 Salmonella type III 분비장치의 분비신호를 조사하기 위해 type III 분비단백질중 하나인 sopE를 택하여 ompR과의 translational fusion을 만들었다. translational fusion을 위해 사용된 sopE DNA절편은 프로모터와 시작 콘돈으로부터 10, 15 코돈을 포함하는 절편이다. Immunoblot으로 확인한 결과, OmpR을 포함하는 fusion 단백질이 형질전환 Salmonella 세포로부터 분비되었다. 이러한 결과는 Salmonella의 type III 분비신호가 분비단백질을 암호화하는 mRNA의 5'말단에 위치할 가능성을 제시하고 있다. 또한, 이러한 분비신호를 활용하여 유용한 외래 단백질을 세균 세포 내에서 효과적으로 생산, 분비할 수 있는 secretion vector의 원형을 개발하였다.

  • PDF