• Title/Summary/Keyword: protein requirement

Search Result 354, Processing Time 0.026 seconds

Forage Intake and Nutrient Requirements of Fallow Weaner Deer in Southern Australia

  • Ru, Y.J.;Fischer, M.;Glatz, P.C.;Wyatt, S.;Swanson, K.;Falkenberg, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.685-692
    • /
    • 2003
  • Information on nutrient requirements and forage intake of fallow weaner deer is required for the development of feeding strategies during the year. An experiment was conducted in which 60 fallow weaner deer (grazing on medic and ryegrass based pastures) were supplemented with a concentrated diet at three levels. The diet contained 2% minerals, 30% lupin and 68% barley grain. Twelve deer from each treatment were dosed with commercial alkane capsules in May, June, July, September and October to predict nutrient intake. The relationships between body weight gain and intake of metabolisable energy and crude protein were established using a general linear models analysis. Dry matter intake from pastures ranged from 0.137 kg to 0.304 kg in May and June and increased to 1.2 kg in October. Nutrient intake from pastures was strongly influenced by amount of supplementary feed and gender. Digestible energy intake from pastures was 1.3, 3.8 and 6.1 MJ/day higher for males than females in July, August and October, respectively. The protein and energy intake was strongly correlated with body weight gain. The energy requirement for maintenance were 7.3, 8.2, 10.2, 10.2 and 10.7 MJ DE/day and the DE required for each kg body weight gain were 19, 18, 29, 34 and 49 MJ in May, June, August and October, respectively. The protein requirement for maintenance was 12.2, 12.6, 15.0, 11.4 and $8.5g/W^{0.75}$ in May, June, July, August and October, respectively. The nutrient requirement defined from this study can be used to assist farmers to explore the possible pasture and stock management practices under southern Australian conditions. However, further research is required to develop rapid and cheap methods for estimating dry matter intake, nutritive value of pastures and to quantify the potential growth rate of fallow deer in southern Australia.

Dietary Optimum Phosphorus Level of Juvenile Korean Rockfish (Sebastes schlegeli)

  • Lee Sang-Min;Park Sung-Real;Kim Jeong Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.180-186
    • /
    • 1998
  • A 10-week feeding experiment was conducted to determine the phosphorus requirement of juvenile Korean rockfish (Sebastes schlegeli). Three replicate groups of fish initially averaging 4.2g were fed the semipurified experimental diets containing graded levels of $NaH_2PO_4\;\cdot\;2H_2O$ to provide from $0.1\%$ to $1.32\%$ total phosphorus level in a flow-through seawater system. Korean rockfish muscle and casein were used as the protein sources of the basal diet. Weight gain, feed efficiency and protein retention of fish fed the $0.35\%$ phosphorus were higher than those of fish fed the $0.1\%$ phosphorus, although no significant improvements $(P>0.01)$ were observed above the level. Determined phosphorus requirement using the broken line model was found to be $0.3\%$ for weight gain. Moisture, protein and lipid contents of whole body and muscle were not affected by dietary phosphorus levels $(P>0.01)$. Lipid contents of liver in fish fed the $0.1\%$ phosphorus were lower than those in fish fed the $0.35\%$ and $1.32\%$ phosphorus $(P<0.01)$. Dietary phosphorus increased ash and phosphorus contents of the whole body, while those of bone were not affected $(P>0.01)$. The data obtained in this study indicate that a $0.3\%$ dietaryphosphorus level could be recommended for the optimum growth and efficient nutrient utilization of juvenile Korean rockfish.

  • PDF

Developing Model Equation to Subdivide Threonine Requirements into Requirements for Growth and Maintenance in Pigs

  • Yang, C.J.;Lee, D.W.;Chung, I.B.;Kim, Y.H.;Shin, I.S.;Chae, B.J.;Kim, J.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.122-133
    • /
    • 1997
  • Purified diets containing 5 graded levels of threonine were fed to young, growing and finishing pigs to determine the threonine requirement for growth and maintenance. A model was developed to subdivide the threonine requirement for the maintenance from the requirement for growth. From this model, the threonine requirement for growth was 7.733, 10.968 and 11.235 g/kg live weight gain and the maintenance requirement was 0.118, 0.048 and 0.024 g per unit of metabolic body size at each stage of growth, respectively. In the young pigs, the threonine requirement for growth was 0.388 g/g N gain and the maintenance requirement was 0.122 g per unit of metabolic body size. The breakpoint of plasma threonine concentrations was 3.995, 7.933 and 7.738 g/d, respectively. Expected requirements obtained from these formulae were in general agreement with previous estimates. Based on the weight gain vs N gain equation, about 4.24% of the retained protein was comprised of threonine and compared to 3.81%, the mean threonine content of pig muscle CP.

Developing Model Equation to Subdivide Methionine + Cystine Requirements into Requirements for Growth and Maintenance in Pigs

  • Yang, C.J.;Lee, D.W.;Chung, I.B.;Cho, Y.M.;Shin, I.S.;Chae, B.J.;Kim, J.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.86-97
    • /
    • 1997
  • Purified diets containing 5 graded levels of methionine + cystine were fed to young, growing and finishing pigs to determine the methionine + cystine requirement for growth and maintenance. A model was developed to subdivide the methionine + cystine requirement for maintenance from requirement for growth. From this model, the methionine + cystine requirement for growth was 8.633, 10.260 and 9.293 g/kg live weight gain and the maintenance requirement was 0.049, 0.016 and 0.019 g per unit of metabolic body size at each stage of growth, respectively. In the young pigs, the methionine + cystine requirement for growth was 0.491 g/g N gain and the maintenance requirement was 0.059 g per unit of metabolic body size. The breakpoint of plasma methionine + cystine concentrations was 3.888, 6.935 and 8.116 g/d, respectively. Expected requirements obtained from these formulae were in general agreement with previous estimates. Based on the weight gain vs N gain equation, about 4.44% of the retained protein was comprised of methionine + cystine and compared to 3.31%, the mean methionine + cystine content of pig muscle CP.

Developing Model Equation to Subdivide Lysine Requirements into Requirements for Growth and Maintenance in Pigs

  • Yang, C.J.;Lee, D.W.;Chung, I.B.;Cho, Y.M.;Shin, I.S.;Chae, B.J.;Kim, J.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.54-63
    • /
    • 1997
  • Purified diets containing 5 graded levels of lysine were fed to young and growing pigs to determine the lysine requirement for growth and maintenance. A model was developed to subdivide the lysine requirement for the maintenance from requirement for growth. From this model, the lysine requirement for growth was 18.018 and 19.431 g/kg live weight gain and the maintenance requirement was 0.115 and 0.033 g per unit of metabolic body size at each stage of growth, respectively. In the young pigs, the lysine requirement for growth was 0.950 g/g N gain and the maintenance requirement was 0.114 g per unit of metabolic body size. The breakpoint of plasma lysine concentrations was 8.695 and 13.464 g/d, respectively. Expected requirements obtained from these formulae were in general agreement with previous estimates. Based on weight gain vs N gain equation, about 7.92% of the retained protein was comprised of lysine as compared to 7.11%, the mean lysine content of pig muscle CP.

Energy Requirement of Rhode Island Red Hens for Maintenance by Slaughter Technique

  • Jadhao, S.B.;Tiwari, C.M.;Chandramoni, Chandramoni;Khan, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1085-1089
    • /
    • 1999
  • Energy requirement of Rhode Island Red (RIR) hens was studied by comparative slaughter technique. Seventeen hens above 72 weeks of age were slaughtered in batches. Batch I consisted of 5 hens which were slaughtered initially. Batch II comprised of six hens, which were fed ad libitum broken rice (BR)-based diet for 18 days. Record of feed intake, number of eggs laid and egg weight during the period was kept. These hens were slaughtered and body energy content was determined. Egg energy was consisted as energy deposited. Batch III consisting of six hens which were fed varying quantity of diet for 15 days, were slaughtered similarly as hens of batch II. Regression equation (body weight to body energy) developed on batch I was applied to batch II and developed on batch II was applied to batch III hens, to find out initial body energy content of hens. Egg energy (EE) was calculated according to formula: EE (kcal) = -19.7 + 1.81 egg weight (g). Regressing metabolisable energy (ME) intake on energy balance (body energy change + egg energy), maintenance ME requirement of hens was found to be $119.8kcal/kg\;W^{0.75}/d$. Multiple regression of ME required for production on energy retained as protein and fat (body plus egg energy) indicated that RIR hens synthesize proteins with an efficiency of 85.5 and fat with an efficiency exceeding 100 percent on BR based diet.

Protein Quality and Amino Acid Utilization in Chickens

  • Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.42 no.1
    • /
    • pp.87-100
    • /
    • 2015
  • It is well known that dietary protein affects the growth performance and carcass composition of poultry. Over the last several decades, numerous studies have been carried out to investigate to optimize the level of dietary protein since the protein is an important and expensive constituent in poultry feed. It is generally accepted that dietary protein should represent a balance of amino acids supporting the requirements for growth and maintenance of birds. A protein with balanced essential amino acids that matches a bird's requirement and sufficient non-essential amino acid nitrogen to enable the synthesis of all of the non-essential amino acids, is referred to as an 'ideal protein'. Feeding of excess protein or amino acids may result in an amount of nitrogen emission. Most common method to reduce nitrogen emission is using diet formulation which has lower dietary crude protein level and higher concentration of amino acid supplements. However, there are conflicting reports whether low protein diets supplemented with synthetic amino acids can obtain the growth performance equal to high protein diets. Excessive nitrogen excretion caused by amino acid imbalance also may influence the environment of poultry house due to ammonia production from uric acid. These environmental conditions may increase the incidence of skin problem or respiratory diseases of chickens. Various strategies based on comprehensive understanding should be tested to optimize nitrogen utilization and reduce nitrogen emission while maintaining the performance in poultry production.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

INTERACTIVE INFLUENCE OF DIETARY PROTEIN AND LIPID IN LACTATION

  • Park, C.S.;Choi, Y.J.;Fisher, G.R.;Erickson, G.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 1988
  • Twenty cows, by order of calving, were used in a completely randomized $2{\times}2$ factorial experiment. Variables were tow protein levels (14 and 18% crude protein) and concentration of fat (2 and 6% ether extract) in diets. Fat addition, via unprocessed whole sunflower seed, insured forage utilization in diets to meet energy requirement of cows. A total of 36 wks of lactation was subdivided into three 12-wk stages of lactation. Net energy lactation was set at 1.72, 1.57 and 1.42 Mcal/kg for each stage. Higher protein diets improved the efficiency of energy (FCM/net energy intake) which was particularly noted for diets containing high fat (85.7%). However, diets with low protein-high fat resulted in the lowest efficiency (67.7%). No difference in milk yield and butterfat was due to different levels and combinations of protein and lipid in diets. High protein diets depressed blood cholesterol and glucose compared to low-protein counterparts. Relative decline in milk production was slower for lower fat diets than for higher fat groups, especially mid to later stage of lactation. Results of this experiment tend to support our thesis on the synergistic effect of dietary protein and energy (lipid) upon efficiency of lactation.