• Title/Summary/Keyword: protein release

Search Result 834, Processing Time 0.03 seconds

Interaction of Forskolin with the Effect of $N^6-cyclopentyladenosine$ on Norepinephrine Release in Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 $N^6-cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi Bong-Kyu;Kim Do-Kyung;Son Yong;Yang Ue-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of NE release in this study. Slices from rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled products was evoked by electrical stimulation.(3 Hz, $5Vcm^{-1}$, 2 ms, rectangular pulses). The influence of various agents on the evoked tritium-outflow was investigated. $N^6-Cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations Tanging from 0.1 to $10{\mu}M$ decreased the $[^3H]-NE$ release in a dose-dependent mauler without any change of basal rate of release. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist, inhibited the CPA effect. The responses to N-ethylmaleimide $(3&10{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the CPA effects were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.1 to $30{\mu}M$ increased the evoked and basal rate of NE release in a dose-dependent manner and the CPA effects were inhibited by forskolin pretreatment. Rolipram $(1&10{\mu}M)$, a phosphodiesterase inhibitor, did not affect the evoked NE release but reduced the CPA effect. And 8-bromo-cAMP $(100&300{\mu}M)$, a membrane permeable cAMP analogue inhibited the CPA effect significantly. These results suggest that the $A_1-adenosine$ heteroreceptor plays an important role in NE-release via nucleotide-binding protein $G_i$ in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF

The Role of Adenosine Receptor on Acetylcholine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Kang, Hun;Jeon, Jae-Min;Kang, Yeon-Wook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked acetylcholine(ACh) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 2 min), and the influence of various agents on the evoked tritiumoutflow was investigated. Ischemia(10 min with 95% $N_2$ + 5% $CO_2$) increased both the basal and evoked ACh release. These increases were abolished by glucose addition into the superfused medium, and they significantly inhibited either by 0.1 & $0.3{\mu}M$ TTX pretreatment or by removing $Ca^{++}$ in the medium. MK-801($1{\sim}10{\mu}M$), a specific NMDA receptor antagonist, and glibenclamide $(1{\mu}M)$, a $K^+-channel$ inhibitor, did not alter the evoked ACh release and nor did they affect the ischemia-induced increases In ACh release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, significantly inhibited the effects of ischemia on the evoked ACh release. Adenosine and $N^6-cyclopentyladenosine$ decreased the ACh release in a dose dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal(normoxic) condition. However, the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist, potentiated the ischemia-effect. These results indicate that the evoked-ACh release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decreased effect of ACh release mediated by $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

ATP-Induced Histamine Release Is in Part Related to Phospholipase $A_2$-Mediated Arachidonic Acid Metabolism in Rat Peritoneal Mast Cells

  • Lee, Yun-Hye;Lee, Seung-Jun;Seo, Moo-Hyun;Kim, Chang-Jong;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.552-556
    • /
    • 2001
  • Histamine and arachidonic acid (AA) release was measured using the P2-purinoceptor antaongists, phospholipase $A_2{\;}(PLA_2)$ and cyclooxygenase (COX)/lipoxygenase (LOX) inhibitors to determine whether or not ATP-induced histamine release is associated with arachidonic acid (AA) release in rat peritoneal mast cells. ATP increased histamine release in a dose dependent manner, whereas adenosine did not. PPADS (a selective P2X-purinoceptor antagonist) and suramin (a nonselective P2X,2Y-purinoceptor antagonist) inhibited ATP-induced histamine release in a dose dependent manner. However, RB-2 (a P2Y-purinoceptor antagonist) did not block ATP-induced histamine release. Manoalide and oleyloxyethyl phosphorylcholine (OPC), secretory PLA$_2$ inhibitors, also inhibited ATP-induced histamine release dose-dependently. Both COX inhibitors (ibuprofen and indomethacin) and LOX inhibitors (baicalein and caffeic acid) inhibited ATP-induced histamine in a dose dependent manner. ATP significantly increased [$^3H$]AA release by 54%. PPADS and suramin significantly inhibited ATP-induced [3H]Ph release by 81% and 39%, respectively. ATP-induced histamine release was significantly inhibited by a variety of protein kinase inhibitors, such as bisindolmaleimide, genistein, methyl 2,5-dihydroxycinnamate, W-7 and trifluoperazine. Overall, the results suggest that ATP-induced histamine release is in part related to the PLA2-mediated AA metabolism and P2X-purinoceptors.

  • PDF

Inhibitory Effect of S100A8 on Neutrophil Apoptosis by Cytokine Release of Normal and Allergic Monocytes

  • Lee, Ji-Sook
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.226-229
    • /
    • 2020
  • S100A8 functions as an essential factor in inflammatory response. Cytokine release of monocytes and regulation of neutrophil apoptosis are important steps in pathogenesis of allergy. This study aims to examine the relation between cytokine release of monocytes due to S100A8 and neutrophil apoptosis. S100A8 enhanced the release of IL-6 and IL-8 in monocytes of normal and allergic subjects. Treatment of supernatants of normal and allergic monocytes with S100A8 blocked neutrophil apoptosis by inhibition of caspase 9 and caspase 3 activation. The secretion signal induced by S100A8 is involved in TLR4, Src family protein, PKCδ, ERK1/2, p38 MAPK, JNK, and NF-κB. These findings may contribute to understanding the complex pathogenesis of allergic diseases by determining inflammatory responses associated with S100A8, monocytes, and neutrophils.

Release of Renal Dipeptidase from Rabbit Renal Proximal Tubules and Its Inhibition by Gentamicin

  • Kang, Bok-Yun;We, Jeoung-Soon;Choi, Kyong;Lee, Hwanghee-Blaise;Han, Ho-Jae;Park, Haeng-Soon
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.367-371
    • /
    • 1999
  • Effects of several durgs on rabbit renal proximal tubules were examined for the applicability of renal dipeptidase (RDPase, EC 3. 4. 13. 11) release as a model system to study nephrotoxicity. The proximal tubule prepared by the method of Taub (1990) released RDPase spontaneously in the control experiment which was confirmed by Western blotting. RDPase was also released form cisplatin, lipopolysaccardie (LPS), and indomethacin-treated tubules. Gentamicin inhibited RDPase release in a concentration-dependent manner. This RDPase release system may not be a general model to screen nephrotoxicity but could be a useful source of RDPase purification in a simple and inexpensive way.

  • PDF

Effects of Solvent Selection and Fabrication Method on the Characteristics of Biodegradable Poly(lactide-co-glycolide) Microspheres Containing Ovalbumin

  • Cho, Seong-Wan;Song, Seh-Hyon;Shoi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.385-390
    • /
    • 2000
  • To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.

  • PDF

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Effects of α1-adrenoceptor stimulation on Mg2+ release in perfused guinea pig heart (관류 기니픽 심장에서 Mg2+ 유리에 미치는 α1-adrenoceptor 자극효과)

  • Hwang, Sung-chul;Kim, Sang-jin;Kang, Hyung-sub;Lee, Seung-ok;Kang, Chang-won;Kwon, Oh-deog;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.327-335
    • /
    • 1996
  • Recently in spite of the interest on the regulation of intracellular $Mg^{2+}$ by neurotransmitters or drugs, the magnesium ion($Mg^{2+}$) regulation by ${\alpha}_1$-adrenoceptor stimulation has not been studied in the heart yet. To elucidate the regulation of ${\alpha}_1$-adrenoceptor stimulation-induced $Mg^{2+}$ release and the effects of ${\alpha}_1$-adrenoceptor stimulation on pathophysiological conditions, in this study we have evaluated the effects of phenylephrine, PMA, $H_7$. staurosporine, verapamil and lidocaine on $Mg^{2+}$ release in perfused guinea pig heart. During preperfusion exogenous $Mg^{2+}$ was added to the medium to give 1.2mM 15min before starting to addition of drugs, and then the infusion of exogenous $Mg^{2+}$ was stopped. $Mg^{2+}$ in the perfusate leaving the heart was measured by atomic absorption spectrophotometry. $Mg^{2+}$ free solution produced an increase in heart rate and phenylephrine elicited $Mg^{2+}$ release from the heart. $Mg^{2+}$ release by phenylephrine was abolished by combined treatment with prazosin. By contrast, cardiac $Mg^{2+}$ uptake induced by a protein kinase C(PKC) activator, PMA was abolished by a selective PKC inhibitor, staurosporine. And the phenylephrine-induced $Mg^{2+}$ release was not affected by the PKC inhibitor, $H_7$. When verapamil or lidocaine was added to perfusing solution, $Mg^{2+}$ release was potentiated by phenylephrine from perfused guinea pig heart. These results suggest that ${\alpha}_1$-adrenoceptor stimulation caused $Mg^{2+}$ release and that PKC is not involved in ${\alpha}_1$-adrenoceptor mediated $Mg^{2+}$ release from perfused guinea pig heart. Under pathophysiological conditions, the $Mg^{2+}$ alteration by ${\alpha}_1$-adrenoceptor stimulation is considerable.

  • PDF

Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers

  • Gardinal, R.;Calomeni, G.D.;Consolo, N.R.B.;Takiya, C.S.;Freitas, J.E. Jr;Gandra, J.R.;Vendramini, T.H.A.;Souza, H.N.;Renno, F.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2017
  • Objective: Two experiments were performed to evaluate the effects of coated slow-release urea on nutrient digestion, ruminal fermentation, nitrogen utilization, blood glucose and urea concentration (Exp 1), and average daily gain (ADG; Exp 2) of steers. Methods: Exp 1: Eight ruminally fistulated steers [$503{\pm}28.5kg$ body weight (BW)] were distributed into a d $4{\times}4$ Latin square design and assigned to treatments: control (CON), feed grade urea (U2), polymer-coated slow-release urea A (SRA2), and polymer-coated slow-release urea B (SRB2). Dietary urea sources were set at 20 g/kg DM. Exp 2: 84 steers ($350.5{\pm}26.5kg$ initial BW) were distributed to treatments: CON, FGU at 10 or 20 g/kg diet DM (U1 and U2, respectively), coated SRA2 at 10 or 20 g/kg diet DM (SRA1 and SRA2, respectively), and coated SRB at 10 or 20 g/kg diet DM (SRB1 and SRB2, respectively). Results: Exp 1: Urea treatments (U2+SRA2+SRB2) decreased (7.4%, p = 0.03) the DM intake and increased (11.4%, p<0.01) crude protein digestibility. Coated slow-release urea (SRA2+-SRB2) showed similar nutrient digestibility compwared to feed grade urea (FGU). However, steers fed SRB2 had higher (p = 0.02) DM digestibility compared to those fed SRA2. Urea sources did not affect ruminal fermentation when compared to CON. Although, coated slow-release urea showed lower (p = 0.01) concentration of $NH_3-N$ (-10.4%) and acetate to propionate ratio than U2. Coated slow-release urea showed lower (p = 0.02) urinary N and blood urea concentration compared to FGU. Exp 2: Urea sources decreased (p = 0.01) the ADG in relation to CON. Animals fed urea sources at 10 g/kg DM showed higher (12.33%, p = 0.01) ADG compared to those fed urea at 20 g/kg DM. Conclusion: Feeding urea decreased the nutrient intake without largely affected the nutrient digestibility. In addition, polymer-coated slow-release urea sources decreased ruminal ammonia concentration and increased ruminal propionate production. Urea at 20 g/kg DM, regardless of source, decreased ADG compared both to CON and diets with urea at 10 g/kg DM.

Interaction between Cholecystokinin and Secretin in Isolated Rat Pancreatic Acini

  • Yoon, Shin-Hee;Hahn, Sang-June;Sim, Sang-Soo;Rhie, Duck-Joo;Song, In-Young;Baek, Hye-Jung;Kim, Myung-Suk;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.243-250
    • /
    • 1995
  • A possible potentiation between cholecystokinin (CCK) and secretin in amylase secretion from isolated rat pancreatic acini was investigated. Combined treatment of acini with secretin and CCK at low concentrations, which are known to be physiological, resulted in enzyme secretion larger than the arithmetic sum of their separate effects. Such a potentiating effect also occurred between secretin and A23187 (Ca ionophore), between forskolin (adenylate cyclase activator) and CCK, and between forskolin and A23187. Staurosporin (protein kinase C inhibitor) and W7 (calmodulin antagonist) inhibited markedly the potentiated amylase release induced by the agonists, but KT5720 (protein kinase A inhibitor) did not affect the potentiated amylase release. Therefore, we concluded that the action of CCK in a physiological concentration is potentiated by secretin in a physiological concentration range and vice versa, and that the intracellular mechanism necessary for the potentiation is associated with $Ca^{2+}$. However, it is uncertain what mechanisms are involved in potentiation of amylase release after CAMP and $Ca^{2+}$.

  • PDF