• 제목/요약/키워드: protein refolding

검색결과 90건 처리시간 0.023초

Baculovirus Expression and Biochemical Characterization of the Bombyx mori Protein Disulfide Isomerase (bPDI)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Park, Kwang-Ho;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제7권2호
    • /
    • pp.127-131
    • /
    • 2003
  • Protein disulfide isomerase (PDI) found in the endoplasmic reticulum (ER) catalyzes disulfide bond exchange and assists in protein folding of newly synthesized proteins. PDI also functions as a molecular chaperone and has been found to be associated with proteins in the ER. In addition, PDI functions as a subunit of two more complex enzyme systems: the prolyl-4-hydroxylase and the triacylglycerol transfer proteins. A cDNA that encodes protein disulfide isomerase was previously isolated from Bombyx mori (bPDI), in which open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and an ER retention signal of the KDEL motif at its C-terminal, and we report its functional characterization here. This putative bPDI cDNA is expressed in insect Sf9 cells as a recombinant proteins using baculovirus expression vector system. The bPDI recombinant proteins are successfully recognized by antirat PDI antibody, and shown to be biologically active in vitro by mediating the oxidative refolding of reduced and scrambled RNase. This suggests that bPDI may play an important role in protein folding mechanism of insects.

빅벨리해마(Hippocampus abdominalis)에서의 Mitochondrial Heat Shock Protein 75 유전자의 특징과 발현 분석 (Characterization of Mitochondrial Heat Shock Protein 75 (mtHSP75) of the Big-belly Seahorse Hippocampus abdominalis)

  • 고지연;;이숙경;;오민영;이제희
    • 한국수산과학회지
    • /
    • 제48권3호
    • /
    • pp.354-361
    • /
    • 2015
  • Mitochondrial heat shock protein 75 (mtHSP75) is a member of the HSP90 family and plays essential roles in refolding proteins of the mitochondrial matrix. Mitochondria provide energy in the form of ATP and generate reactive oxygen species (ROS). Heat shock proteins (HSPs) are activated in response to stress, and protect cells. In this study, we characterized the mtHSP75 of the big-belly seahorse Hippocampus abdominalis. The protein (BsmtHSP75) is encoded by an open reading frame (ORF) of 2,157 nucleotides, has 719 amino acids (aa), and is of molecular mass 82 kDa. BsmtHSP75 has two functional domains, a histidine kinase-like ATPase (HATPase_c) domain (123-276 aa) and an HSP90 family domain (302-718 aa). BsmtHSP75 was expressed in all tested tissues of healthy seahorses. The ovary contained the highest transcription level, followed (in order) by the blood, brain, and muscle. Pouch tissue showed the lowest expression level. The expression of BsmtHSP75 was significantly (P<0.05) up-regulated on viral or bacterial challenge, suggesting that BsmtHSP75 plays a role in the immune defense against bacterial and viral pathogens.

활성화된 Sepharose Gels에 공유결합으로 고정화된 Urokinase를 이용한 융합단백질 절단반응 (Fusion Protein Cleavage by Urokinase Covalentley Immobilized to Activated Sepharose Gels)

  • 서창우;강관엽;이효실;안상점;이은규
    • KSBB Journal
    • /
    • 제15권1호
    • /
    • pp.42-48
    • /
    • 2000
  • 본 연구에서는 고정화 UK를 이용한 융합단백질의 절단방응에 대해 UK의 고정화, 고정화 UK의 특성과 절단방응, 절단반응 후의 분리정제 그리고 고정화 UK으 재생에 대해 실험하였다. 고정화 수율은 99% 이상이였고 고정화 후의 효소활성은 80%를 유지하였다. 융합단백질 전단반응에서 액상 UK와 고정화 UK를 이용한 회분식 반응 모두 약 70%의 절단반응을 얻었고, 특히 고정화 UK의 사용시 부반응이 매우 낮은 이점이 있었다. 컬럼식 절단반응에서는 기절의 주입속도에 따라 절단수율은 크게 변화하였다. 최적의 유속은 50%의 절단수율을 얻은 1 bed volume/h로 설정하였다. 고정화 효소반응의 이점인 안정성과 반복사용 측면에서는 액상 UK 대비 고정화 UK가 높은 열안정성을 보였고 낮은 pH에서는 10% 이상 높은 활성을 유지하였다. 반복사용을 위해 6M GuHCl을 사용하여 인위적으로 풀림, 재접힘을 한 경우 98%의 활성을 얻음으로 타당성이 있음을 제시하였다. 또한 목적 단백질의 분리를 위하여 산침전 후 expanded bed adsorption 크로마토그래피를 이용함으로써 연속화된 고수율의 정제공정을 가능하게 하였다. 이러한 고정화 UK를 이용한 절단방응 및 정제시스템을 구축함으로써 융합단백지의 생산공정에 매우 유용하게 사용될 것으로 생각되어진다.

  • PDF

Backbone NMR assignments of the FAS1-3/FAS1-4 domains of transforming growth factor-beta-induced protein

  • Kang, Dong-Hoon;Yi, Jong-Jae;Sim, Dae-Won;Park, Jung-Wook;Lee, Sung-Hee;Kim, Eun-Hee;Jeon, Young-Ho;Son, Woo Sung;Won, Hyung-Sik;Kim, Ji-Hun
    • 한국자기공명학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2020
  • An extracellular matrix protein, transforming growth factor-beta-induced protein (TGFBIp/βig-h3), which is induced by transforming growth factor-β in the human cornea, skin, and matrix of many connective tissues, is associated with the adhesion, migration, proliferation, and differentiation of various cells. TGFBIp contains four homologous repeat domains, known as FAS1 domains, where certain mutations have been considered to cause corneal dystrophies. In this study, backbone NMR assignments of FAS1-3/FAS1-4 tandem domain were obtained and compared with those previously known for the isolated FAS1-4 domain. The results corroborate in solution the inter-domain interaction between FAS1-3 and FAS1-4 in TGFBIp.

Expression and Biochemical Characterization of the Bacillus thuringiensis Cry4B ${\alpha}1$-${\alpha}5$ Pore-forming Fragment

  • Puntheeranurak, Theeraporn;Leetacheewa, Somphob;Katzenmeier, Gerd;Krittanai, Chartchai;Panyim, Sakol;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제34권4호
    • /
    • pp.293-298
    • /
    • 2001
  • Tryptic activation of the 130-kDa Bacillus thuringiensis Cry4B $\delta$-endotoxin produced protease-resistant products of ca. 47 kDa and ca. 21 kDa. The 21-kDa fragment was identified as the N-terminal five-helix bundle (${\alpha}1-{\alpha}5$,) which is a potential candidate for membrane insertion and pore formation. In this study, we constructed the recombinant clone over-expressing this putative pore-forming (PPF) fragment as inclusion bodies in Escherichia coli. The partially purified inclusions were composed of a 23-kDa protein, which cross-reacted with Cry4B antibodies, and whose N-terminus was identical to that of the 130-kDa protein. Dissimilar to protoxin inclusions, the PPF inclusions were only soluble when the carbonate buffer, pH 9.0, was supplemented with 6 M urea. After renaturation via a stepwise dialysis, the refolded PPF protein appeared to exist as an oligomer and was structurally stable upon trypsin treatment. Unlike the 130kDa protoxin, the refolded protein was able to release entrapped glucose from liposomes, and showed comparable activity to the full-length activated toxin, although it lacks larvicidal activity These results, therefore, support the notion that the PPF fragment that consists of ${\alpha}1-{\alpha}5$ of the activated Cry4B toxin is involved in membrane pore-formation.

  • PDF

융합 파트너를 이용한 인간 상피세포성장인자의 재조합 대장균에서 발현과 정제 연구 (Expression and Purification of Recombinant Human Epidermal Growth Factor Using Fusion Partners in Escherichia coli)

  • 성기현;김인호
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.711-717
    • /
    • 2018
  • 상피세포 성장인자(Epidermal Growth Factor, EGF)는 세포 분열을 자극하고 의약적 용도가 다양하다. EGF는 3개의 이황화 결합을 갖고 불용성으로, 대장균에서 고효율 발현에 대한 연구가 잘 이루어지지 않았다. EGF 유전자를 작은 유비퀴틴 관련 유전자(small ubiquitin-related modifier gene, SUMO)와 결합하고 DE3 대장균에서 발현시켰다. IPTG (Isopropyl-${\beta}$-D-Thiogalactopyranoside)로 유도하여 대장균 세포 단백질의 38.9%로 융합단백질이 발현되었고, Ni-NTA 친화성 크로마토그래피로 분리하였다. 그 후 유비퀴틴 분해효소반응으로 융합단백질에서 EGF를 얻은 후 다시 Ni-NTA 크로마토그래피로 분리 하였다. 최종적으로 정제된 EGF의 순도는 HPLC로 분석하였으며, 98%이상의 순도를 얻을 수 있었다.

Expression and Purification of Transmembrane Protein MerE from Mercury-Resistant Bacillus cereus

  • Amin, Aatif;Sarwar, Arslan;Saleem, Mushtaq A.;Latif, Zakia;Opella, Stanley J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.274-282
    • /
    • 2019
  • Mercury-resistant ($Hg^R$) bacteria were isolated from heavy metal polluted wastewater and soil collected near to tanneries of district Kasur, Pakistan. Bacterial isolates AZ-1, AZ-2 and AZ-3 showed resistance up to $40{\mu}g/ml$ against mercuric chloride ($HgCl_2$). 16S rDNA ribotyping and phylogenetic analysis were performed for the characterization of selected isolates as Bacillus sp. AZ-1 (KT270477), Bacillus cereus AZ-2 (KT270478) and Bacillus cereus AZ-3 (KT270479). Phylogenetic relationship on the basis of merA nucleotide sequence confirmed 51-100% homology with the corresponding region of the merA gene of already reported mercury-resistant Gram-positive bacteria. The merE gene involved in the transportation of elemental mercury ($Hg^0$) via cell membrane was cloned for the first time into pHLV vector and transformed in overexpressed C43(DE3) E. coli cells. The recombinant plasmid (pHLMerE) was expressed and the native MerE protein was obtained after thrombin cleavage by size exclusion chromatography (SEC). The purification of fusion/recombinant and native protein MerE by Ni-NTA column, dialysis and fast protein liquid chromatography (FPLC/SEC) involved unfolding/refolding techniques. A small-scale reservoir of wastewater containing $30{\mu}g/ml$ of $HgCl_2$ was designed to check the detoxification ability of selected strains. It resulted in 83% detoxification of mercury by B. cereus AZ-2 and B. cereus AZ-3, and 76% detoxification by Bacillus sp. AZ-1 respectively (p < 0.05).

Binding Characteristics to Mosquito-larval Midgut Proteins of the Cloned Domain II-III Fragment from the Bacillus thuringiensis Cry4Ba Toxin

  • Moonsom, Seangdeun;Chaisri, Urai;Kasinrerk, Watchara;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.783-790
    • /
    • 2007
  • Receptor binding plays an important role in determining host specificity of the Bacillus thuringiensis Cry $\delta$-endotoxins. Mutations in domains II and III have suggested the participation of certain residues in receptor recognition and insect specificity. In the present study, we expressed the cloned domain II-III fragment of Cry4Ba and examined its binding characteristics to mosquito-larval midgut proteins. The 43-kDa Cry4Ba-domain II-III protein over-expressed in Escherichia coli as inclusion bodies was only soluble when carbonate buffer, pH 10.0 was supplemented with 4M urea. After renaturation via stepwise dialysis and subsequent purification, the refolded domain II-III protein, which specifically reacts with anti Cry4Ba-domain III monoclonal antibody, predominantly exists as a $\beta$-sheet structure determined by circular dichroism spectroscopy. In vitro binding analysis to both histological midgut tissue sections and brush border membrane proteins prepared from susceptible Aedes aegypti mosquito-larvae revealed that the isolated Cry4Ba-domain II-III protein showed binding functionality comparable to the 65-kDa full-length active toxin. Altogether, the data present the 43-kDa Cry4Ba fragment comprising domains II and III that was produced in isolation was able to retain its receptor-binding characteristics to the target larval midgut proteins.

BACE2의 대량발현 및 리폴딩 (Overexpression and Refolding of BACE2)

  • 박선주;타이슈아이치;이연지;전유진;김용태
    • 한국수산과학회지
    • /
    • 제47권4호
    • /
    • pp.370-375
    • /
    • 2014
  • BACE2 is a membrane-bound aspartic protease that is highly homologous with BACE1. While BACE1 processes the amyloid precursor protein (APP) at a key step in generating ${\beta}$-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be involved in APP processing directly, and its physiological functions are unknown. To determine its function and to develop inhibitors from marine sources, we constructed an overexpression vector for producing BACE2. The gene encoding human BACE2 protease was amplified using the polymerase chain reaction and cloned into the pET11a expression vector, resulting in pET11a/BACE2. Recombinant BACE2 protease was overexpressed successfully in E. coli as inclusion bodies, refolded using the rapid-dilution method, and purified via two-step fast protein liquid chromatography using Sephacryl S-300 gel filtration and Resource-Q column chromatography. The BACE2 protease produced was an active form. This study provides an efficient method not only for studying the basic properties of BACE2, but also for developing inhibitors from natural marine sources.

E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성 (Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system)

  • 최경희;문금옥;김수홍;윤정호;장경립;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제38권1호
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.