• Title/Summary/Keyword: protein refolding

Search Result 90, Processing Time 0.028 seconds

Solid-phase Refolding of Immobilized Enterokinase for Fusion Protein Cleavage (융합단백질 절단반응을 위한 고정화된 enterokinase의 고체상 재접힘)

  • 서창우;나세진;박신혜;박승국;이은규
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.306-311
    • /
    • 2003
  • Solid-phase refolding of immobilized proteins can be an effective way to reuse an immobilized enzyme column. Oriented immobilization methods are known to provide higher activity of the immobilized enzymes. In this study, using recombinant EK (enterokinase) as a model enzyme and a fusion protein, that consisted of recombinant human growth hormone and six His tag that was linked by the peptide of EK-specific recognition sequence, as a model substrate, we evaluated two oriented immobilization methods, i. e., reductive alkylation of N-terminus ${\alpha}$-amine and affinity interaction between poly-histidine tag and Ni-NTA (nickel-nitrilotriacetic acid). The immobilization yield, activity and cleavage of the immobilized enzymes, and the yield of solid-phase refolding were compared. The Ni affinity immobilization and the covalent immobilization yields were about 100% and 65%, respectively. But the specific activities were the same, about 50% of that of the soluble enzyme. The cleavage rate by the covalently immobilized EK was higher than the soluble enzyme and the side reaction of cryptic cleavage was significantly decreased. Covalently immobilized EK showed almost 100% refolding yield but the affinity immobilized EK showed only 70% yield, which suggested the covalent conjugation provided more rigid ‘reference structure’ for the solid-phase refolding. The monomeric hGH could be easily obtained by capturing the cleaved poly Histidine tag by the Ni affinity column.

Heterologous Expression of Lignin Peroxidase H2 in Escherichia coli: In Vitro Refolding and Activation

  • Lee, Dong-Ho;Kim, Dong-Hyun
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.486-491
    • /
    • 1999
  • An engineered cDNA from Phanerochaete chrysosporium encoding both the mature and propeptide-sequence regions of lignin peroxidase H2 (Lip H2) was overexpressed in Escherichia coli BL21 (DE3) to evaluate its catalytic characteristics and potential application as a pollution scavenger. All expressed proteins were aggregated in an inactive inclusion body, which might be due to inherent disulfide bonds. Active enzyme was obtained by refolding with glutathione-mediated oxidation in refolding solution containing $Ca^{2+}$, heme, and urea. Propeptide-sequence region was not processed as evidenced by N-terminal sequence analysis. Recombinant Lip H2 (rLip H2) had the same physical properties of the native protein but differed in the $K_{cat}$. Catalytic efficiency ($k_{cat}/K_m$) of rLip H2 was slightly higher than that of the native enzyme. In order to express an active protein, fusion systems with thioredoxin or Dsb A, which have disulfide isomerase activity, were used. The fused proteins expressed by the Dsb A fusion vector were aggregated, whereas half of the thioredoxin fusion proteins were recovered as a soluble form but still catalytically inactive. These results suggest that Lip H2 may not be expressed as an active enzyme in Escherichia coli although the activity can be recovered by in vitro refolding.

  • PDF

Refolding of Bacillus macerans Cyclodextrin Glucanotransferase Expressed as Inclusion Bodies in Recombinant Escherichia coli

  • Kim, Chung-Im;Kim, Myoung-Dong;Park, Yong-Cheol;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.632-637
    • /
    • 2000
  • This research was undertaken to restore the biological activity of cyclodextrin glucanotransferase (CGTase) of Bacillus macerans origin expressed as inclusion bodies in recombinant Escherichia coli. The optimum concentration of urea used as a denaturant was 8 M. The supplementation of 0.5 M urea into a dialysis buffer increased the refolding efficiency by preventing any protein aggregation. The influence of the protein concentration, temperature, and pH were also investigated. The protein concentration was found to be the most important factor in the refolding efficiency. The optimum temperature was 15-$25^{\circ}C$ and the optimum pH was 6.0. The maximum specific activity of the CGTase refolded under the optimum conditions was 92.2 U/mg, corresponding to 72% of the native CGTase. A comparison of the secondary structure between the native and the refolded CGTase showed that the relative ratio of the $\alpha$-helix content in the native to the refolded CGTase was 1:0.82.

  • PDF

In-Vitro Refolding of PEGylated Lipase (PEGylation된 Lipase의 In-Vitro 재접힘)

  • Kim, Min-Young;Kwon, Jin-Sook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.20 no.5 s.94
    • /
    • pp.338-340
    • /
    • 2005
  • Covalent modification of a protein with polyethylene glycol (PEG) has become one of the most widely used and well established drug enhancement strategies in the biopharmaceutical industry. The general benefits enjoyed by PEGylation, such as prolonged serum half-lives or reduced immunogenicity in vivo, are well known. By now the PEGylation process has been performed with purified proteins, and it is required to recover the desired PEGylate by a multi-step purification process. The ultimate aim of our research is to develop an integrated process of PEGylation and in vitro refolding starting with inclusion body material. For this, we investigated the feasibility that a protein could be PEGylated under a denaturing condition and also the PEGylated proteins could be refolded correctly. Using lipase as a model protein, we found that it was PEGylated in the presence of 8M urea and that the PEG molecules covalently attached to lipase did not appear to hinder its refolding.

Protein Folding, Misfolding and Refolding of Therapeutic Proteins

  • Shin, Hang-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.237-243
    • /
    • 2001
  • Substantial progress has been made towards understanding the folding mechanisms of proteins in virto and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible cules for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the part decade are summarized.

  • PDF

Solid-Phase Refolding of Poly-Lysine fusion Protein of hEGF and Angiogenin (Poly-lysine이 연결된 hEGF와 angiogenin의 융합단백질의 고체상 재접힘)

  • Park, Sang-Joong;Ryu, Kang;Suh, Chang-Woo;Chai, Young-Gyu;Kwon, Oh-Byung;Park, Seung-Kook;Lee, Eun-Kyu
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.153-157
    • /
    • 2002
  • A fusion protein, consisting of a human epidermal growth factor as the recognition domain and human angiogenin as the toxin domain, can be used as a targeted therapeutic against breast cancer cells among others. The fusion protein was expressed as an inclusion body in recombinant E. coli, yet when the conventional solution-phase refolding process was used the refolding yield was very low due to severe aggregation, probably because of the opposite surface charge resulting from the vastly different pl values of each domain. Accordingly the solid-phase refolding process, which exploits the ionic interactions between a solid matrix and the protein, was tried, however the ionic binding yield was also very low regardless of the resins and pH conditions used. Therefore, to provide a higher affinity toward the solid matrix, six Iysine residues were tagged to the N-terminus of the hEGF domain. When cation exchange resins, such as heparin- or CM-Sepharose, were used as the matrix, the adsorption capacity increased 2.5~3-fold and the subsequent refolding yield increased nearly 15-fold compared to the conventional process. A similat result was also obtained when an Ni-NTA metal affinity resin was used.

Solid-Phase Refolding of Inclusion Body Protein in Packed Bed Adsorption and Expanded Bed Adsorption Chromatography (Packed Bed Adsorption과 Expanded Bed Adsorption 크로마토그래피를 이용한 내포체 단백질의 고체상 재접힘)

  • 최원찬;김민영;서창우;이은규
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.500-505
    • /
    • 2003
  • ‘LK (lipoprotein kringle) 68’is a polypeptide of a modified ansiostatin consisting of three kringle structures that might be clinically useful as a potential cancer therapeutics. It can be produced by overexpressing it as inclusion body in recombinant E. coli. In this study, solid-phase refolding processes using packed bed adsorption (PBA) and expanded bed adsorption (EBA) column were carried out to compare their refolding yields with that of the conventional, solution-phase refolding process, For the solution-phase and the PBA-mediated processes employing Q-Sepharose, washed inclusion body was used as the starting material, whereas both washed inclusion body and E. coli homogenate were used for the EBA-mediated process employing streamline DEAE. On the final recovery LK68 per unit mass of wet cell basis, the EBA- and PBA-mediated processes showed about 2.7- and 1.5-fold higher yields, respectively, than the solution-phase refolding method. The solid-phase refolded LK68 demonstrated the same Iysine binding bioactivity and the retention time in the RP-and SEC-HPLC as those of the native protein.

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.

Expression, Refolding, and Characterization of the Proteolytic Domain of Human Bone Morphogenetic Protein 1 (뼈형성 단백질(Bone Morphogenetic Protein 1)의 단백질 분해 부위의 발현 및 특성 연구)

  • ;Daihung Do
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.218-227
    • /
    • 2000
  • Bone morphogenetic protein 1 (BMP-1) is part of a complex capable of inducing ectopic bone formation in mammals. Studies on TGF-β1 processing and Drosophila dorsal-ventral patterning have focused attention on BMP-1 as important in mediating the biological activity of this bone inducing complex. Herein, the bacterial expression, refolding, purification, and initial characterization of the BMP-1 proteolytic domain (BPD) are described. A semi-quantitative fluorescence-based thin layer chromatography assay was developed to assist in rapidly screening for optimal renaturation conditions. According to a preliminary screen for optimal conditions for the refolding of BPD , a detectable proteolytic activity against a high turnover substrate for astacin, a homologous protease from crayfish was observed. The conditions identified have allowed the expression of sufficient amounts of BPD for the characterization of the protein. Its proteolytic activity exhibits the same cleavage specificity as astacin against seven substrates that were previously synthesized for studying astacin. Furthermore, this activity is inhibited by the metal chelator 1,10-phenanthroline but not by its analogue 1,7-phenanthroline. The collagenase inhibitor Pro-Leu-Gly hydroxamate was found to inhibit both astacin and BPD activity. The results presented in this paper argue that BMP-1 does in fact possess an intrinsic proteolytic activity.

  • PDF

The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase

  • Khalifeh, Khosrow;Ranjbar, Bijan;Alipour, Bagher Said;Hosseinkhani, Saman
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Thermodynamic stability and refolding kinetics of firefly luciferase and three representative mutants with depletion of negative charge on a flexible loop via substitution of Glu by Arg (ER mutant) or Lys (EK mutant) as well as insertion of another Arg in ER mutants (ERR mutant) was investigated. According to thermodynamic studies, structural stability of ERR and ER mutants are enhanced compared to WT protein, whereas, these mutants become prone to aggregation at higher temperatures. Accordingly, it was concluded that enhanced structural stability of mutants depends on more compactness of folded state, whereas aggregation at higher temperatures in mutants is due to weakening of intermolecular repulsive electrostatic interactions and increase of intermolecular hydrophobic interactions. Kinetic results indicate that early events of protein folding are accelerated in mutants.