Protein Folding, Misfolding and Refolding of Therapeutic Proteins

  • Shin, Hang-Cheol (Department of Bionformatics and Life Science, Soongsil University Seoul, 156-743, Korea and Bioproducts Research Center, Yonsei University Seoul 120-7)
  • Published : 2001.07.01

Abstract

Substantial progress has been made towards understanding the folding mechanisms of proteins in virto and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible cules for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the part decade are summarized.

Keywords

References

  1. EMBO J. v.17 Protein folding and misfolding inside and outside the cell. Dobson, C. M.;R. J. Ellis
  2. Adv. Protein Chem. v.7 The arrangement of amino acids in protein. Sanger, F.
  3. Science v.181 Principles that govern the folding of protein chains. Anfinsen, C. B.
  4. J. Chim. Phys. v.65 Are there pathways for protein folding? Levinthal, C.
  5. Ann. Rev. Biochem. v.59 Intermediates in the folding reactions of small proteins. Kim, P. S. and R. L. Baldwin
  6. Protein Sci. v.3 Protein folding dynamics: the diffusion-collision model and experimental data. Karplus, M.;D. L. Weaver
  7. Trends Biochem. Sci. v.15 Nucleation in protein folding--confusion of structure and process. Wetlaufer, D. B.
  8. Trends Biochem. Sci. v.20 How the molten globule became. Ptitsyn, O. B.
  9. Proteins: Struct. Funct. Genet. v.6 The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Kuwajima, K.
  10. Proc. Natl. Acad. Sci. USA v.82 Is there a single pathway for the folding of a polypeptide chain? Harrison, S. C.;R. Durbin
  11. Cell v.92 The eS-Sence of .SH in the ER. Huppa, J. B. and H. L. Ploegh
  12. Trends Biochem. Sci. v.19 Protein disulfide isomerase: Building bridges in protein folding. Freedman, R. B.;T.R. Hirst;M.F. Tuite
  13. Methods Enzymol. v.290 Protein disulfide isomerase. Gilbert, H. F.
  14. Biochemistry v.30 Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Lyles, M. M.;H. F. Gilbert
  15. Methods Enzymol. v.131 Disulfide bonds as probes of protein folding pathways. Creighton, T. E.
  16. Trends Biochem. Sci. v.163 How does protein folding get started? Baldwin, R. L.
  17. Biochemistry v.13 Pathways of folding of reduced bovine pancreatic ribonuclease. Hantgan, R. R.;G. G. Hammes;H. A. Scheraga
  18. J. Mol. Biol. v.113 Conformational restrictions on the pathway of folding and unfolding of the pancreatic trypsin inhibitor. Creighton, T. E.
  19. Science v.253 Reexamination of the folding of BPTI . predominance of native intermediates. Weissman, J. S.;P. S. Kim
  20. Biochemistry v.35 Non-random distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. Xu, X. B.;D. M. Rothwarf;H. A. Scheraga
  21. Biochemistry v.38 Distribution of disulfide bonds in the two-disulfide intermediates in the regeneration of bovine pancreatic ribonuclease A: Further insights into the folding process. Volles, M. J.;X. B. Xu;H. A. Scheraga
  22. J. Mol. Biol. v.300 Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. Shin, H.-C.;H. A. Scheraga
  23. FEBS Lett. v.456 Effect of protein disulfide isomerase on the regeneration of bovine ribonuclease A with dithiothreitol. Shin, H.-C.;H. A. Scheraga
  24. Trends Biochem Sci. v.24 Protein misfolding, evolution and disease. Dobson, C. M.
  25. Adv. Protein Chem. v.50 The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Sunde, M.;C. C. F. Blake
  26. Science v.278 Prion diseases and the BSE crisis. Prusiner, S. B.
  27. J. Biol. Chem. v.274 Molecular genetics of transmissible spongiform encephalopathies. Weissman, C.
  28. Science v.283 Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Jackson, G. S.;I. L. Hosszu;A. Power;A. F. Hill;J. Kenney;H. Saibil;C. J. Craven;J. P. Waltho;A. R. Clarke;J. Collinge
  29. Curr. Opin. Struct. Biol. v.8 The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Kelly, J. W.
  30. Biochem. Soc. Trans. v.16 Properties of inclusion bodies from recombinant Escherichia coli. Hartley, D. L. and J. F. Kane
  31. Biochem. J. v.240 The purification of eukaryotic polypeptides synthesized in Escherichia coli. Marston, F. A.
  32. Bioprocess Technol. v.12 Properties of recombinant protein-containing inclusion bodies in Escherichia coli Kane, J. F.;D. L. Hartley
  33. Bio/Technol. v.8 Solubility as a function of protein structure and solvent components. Schein, C.
  34. FASEB J. v.10 In vitro folding of inclusion body proteins. Rudolph, R.;H. Lilie
  35. Biotechnol. Bioeng. v.41 Isolation and renaturation of bio-active proteins expressed in Escherichia coli as inclusion bodies. Fischer, B.;I. Sumner;P. Goodenough
  36. Curr. Opin. Biotechnol. v.9 Advances in refolding of proteins produced in E. coli. Lilie, H.;E. Schwarz;R. Rudolph
  37. Protein Eng. v.2 The oxidative folding of proteins by disulfide plus thiol does not correlate with redox potential. Wetlaufer, D. B.;P. A. Branca;G.-X. Chen
  38. Modern Methods in Protein and Nucleic Acid Research. Rudolph, R.;H. Tschesche (ed.)
  39. Anal. Biochem. v.230 A sparse matrix screen to establish initial conditions for protein renaturation. Hofmann, A.;M. Tai;W. Wong;C. G. Glabe
  40. Proc. Natl. Acad. Sci. USA v.89 Independent domain folding of Pseudomonas exotoxin and single-chain immunotoxins: influence of interdomain connections. Brinkmann, U.;J. Buchner;I. Pastan
  41. Bio/Technol. v.9 Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Buchner, J.;R. Rudolph
  42. J. Biol. Chem. v.267 Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model Cleland, J. L.;C. Hedgepeth;D. I. C. Wang
  43. Bio/Technol. v.10 Polyethylene glycol enhanced protein refolding. Cleland, J. L.;S. E. Builder;J. R. Swartz;M. Winkler;J. Y. Chang;D. I. C. Wang
  44. J. Biol. Chem. v.262 Detergent-assisted refolding of guanidinium chloride-denatured rhodanese. The effects of the concentration and type of detergent. Tandon, S.;P. M. Horwitz
  45. Gene v.67 Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Smith, D. B.;K. S. Johnson
  46. Bio/Technol. v.11 A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. R. Lavallie, E.;E. A. DiBlasio;S. Kovacic;K. L. Grant;P. F. Schendel;J. M. McCoy
  47. J. Biotechnol. v.62 High level production of recombinant human growth hormone in Escherichia coli by a simple recombinant process. Shin, N.-K.;D.-Y. Kim;C.-S. Shin;M.-S. Hong;J. Lee;H.-C. Shin
  48. Protein Expr. Purif. v.12 Expression of eukaryotic proteins in soluble form in Escherichia coli. Zhang, Y.;D. R. Olsen;K. B. Nguyen;P. S. Olson;E. T. Rhodes;D. Mascarenhas
  49. Gene v.224 High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Forrer, P.;R. Jaussi
  50. Nature Biotechnol. v.17 Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Meyer, D. E.;A. Chilkoti
  51. Nucleic Acids Res. v.13 Efficient secretion and purification of human insulin-like growth factor I with a gene fusion vector in Staphylococci. Nilsson, B.;E. Holmgren;S. Josephson;S. Gatenbeck;L. Philipson;M. Uhlen
  52. Eur. J. Biochem. v.171 Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into the periplasmic space. Bedouelle, H.;P. Duplay
  53. Biotechnol. Bioeng. v.67 Secretory production of human leptin in Escherichia coli. Jeong, K. J.;S. Y. Lee
  54. Curr. Opin. Biotechnol. v.10 Recombinant protein expression in Escherichia coli. Baneyx, F.
  55. Trends Bichem. Sci. v.20 Defective protein folding as a basis of human disease. Thomas, P. J.;B.-H. Qu;P. L. Pedersen
  56. Bio/Technol. v.7 Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Sarmientos, P.;M. Duchesne;P. Denefle;J. Boiziau;N. Fromage;N. Delporte;F. Parker;Y. Lelievre;J.-F. Mayaux;T. Cartwright
  57. Protein Eng. v.5 Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Kohnert, U.;R. Rudolph;J. H. Verheijen;E. J. D. Weening-Verhoeff;A. Stern;U. Opitz;U. Martin;H. Lill;H. Printz;M. Lechner;G.-B. Kresse;P. Buckel;S. Fischer
  58. J. Biochem. v.109 Renaturation, purification, and characterization of human truncated macrophage colony-stimulating factor expressed in Escherichia coli Yamanishi, K.;M. Takahashi;T. Nishida;Y. Ohtomo;M. Takano;S. Nakai;Y. Hirai
  59. Biochemistry v.26 Characterization of disulfide bonds in recombinant proteins: Reduced human interleukin 2 in inclusion bodies and its oxidative refolding. Tsuji, T.;R. Nakagawa;N. Sugimoto;K. Fukuhara
  60. Eur. J. Biochem. v.173 Expression, renaturation and purification of recombinant human interleukin-4 from Escherichia coli. van Kimmenade, A.;M. W. Bond;J. H. Schumacher;C. Laquoi;R. A. Kastelein
  61. Biotechnol. Bioeng. v.62 High yield refolding and purification process for recombinant human interleukin-6 expressed in Escherichia coli. Ejima, D.;M. Watanabe;Y. Sato;M. Date;N. Yamada;Y. Takahara
  62. Eur. J. Biochem. v.257 Preparation of recombinant tissue inhibitor of metalloproteinases-1 (TIMP-1) in high yield and identification of a hydrophobic surface feature. Hodges, D. J.;D. G. Reid;A. D. Rowan;I. M. Clark;T. E. Cawston
  63. Eur. J. Biochem. v.241 Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies. Williamson, R. A.;D. Natalia;C. K. Gee;G. Murphy;M. D. Carr;R. B. Freedman