• Title/Summary/Keyword: protein quality

Search Result 3,729, Processing Time 0.04 seconds

Simulation of the Effect of Protein Quality at the Different Protein Intake Level on Protein Metabolism (각기 다른 단백질섭취 수준에서 본 식이단백질의 질이 단백질대사에 미치는 영향 -Simulation Model을 이용하여-)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.26 no.9
    • /
    • pp.1033-1048
    • /
    • 1993
  • This study was designed to describe the effect of the protein quality at different intake level of protein on the protein metabolism in the whole body of growing pigs with a simulation model. Varying to the protein level in feeds, four simulations were conducted. The feed protein level, represented as proportions of digestible protein to the metabolic energy (DP/ME, g/MJ), were 6-8, 11-13, 17-19, and 23-25 DP/ME, respectively. Two protein quality and six weeks of growth time were used at each simulation. The objective function for the simulations was protein deposition in the whole body, which was calculated from the experimental results. The parameters in the simulation were determined by the parameter estimation technique. The results obtained from the simulation were as follows: The protein synthesis and breakdown rates(g/day) in the whole body was increased with the increase of protein quality only at lower or required level of protein intake. They showed a parallel behavior in the course of growth, irrespective of quality and level of feed protein intake. The simulated protein deposition and protein synthesis showed a linear relationship between them at different protein quality and level. The affinity parameter showed a linear relationship between them at different protein quality and level. The affinity parameter showed that arginine, tryptophan and isoleucine were more efficient in the stimulation ofbody protein synthesis. Lysine and phenylalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, pheyalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, phenyalanine+tyrosine, and methionine+cystine were oxidized in larger magnitude than lysine and threonine. The oxidation parameter of most amino acids increased with the increase of protein intake beyond the requirement level, but not any more at highest protein intake level. Finally it was found that the improvement of feed protein quality at the lower or required level of protein intake increase protein deposition through a parallel increase of protein synthesis and breakdown.

  • PDF

Effects of Feed Protein Quality on the Protein Metabolism of Growing Pigs - Using a Simulation Model - (성장기 돼지의 단백질대사에 사료단백질의 질이 미치는 영향 -수치모델을 사용하여-)

  • 이옥희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.704-713
    • /
    • 1997
  • This study was conducted to describe qualitatively the protein metabolism of pigs during growth depending on the feed protein quality and to describe quantitatively amino acids requirements, using a simulation model. The used model has a non-linear structure. In the used model, the protein utilization system of a pig, which is in the non-steady-state, is described with 15 flux equations and 11 differential equations and is composed with two compartments. Protein deposition(g/day) of pigs on the 30th, 60th, 90th, and 120th day of feeding duration with three-quality protein, beginning with body weight 20kg, were calculated according to the empirical model, PAF(the product of amino acid functions) of Menke, and was used as object function for the simulation. The mean of relative difference between the simulated protein deposition and PAF calculated values, lied in a range of 8.8%. The simulated protein deposition showed different behavior according to feed protein quality. In the high-quality protein, it showed paraboloidal form with extending growth simulation up to 150eh day. So the maximum of protein deposition was acquired on the 105th day of simulate growth time and then it decreased fast. In the low-quality protein, this form of protein deposition in the course of simulated growth did not appear until 150th day. The simulated protein mass also showed a difference in accordance with feed protein quality. The difference was small on the 30th day of simulated growth, but with duration of the simulated growth it was larger. On the 150th day the simulated protein deposition of high quality protein was 1.5 times higher as compared to the low-quality protein. The simulated protein synthesis and break-down rates(g/day) in the whole body showed a parallel behavior in the course of growth, according to feed protein quality. It was found that the improvement of feed protein quality increased protein deposition in the whole body through a increase of both protein synthesis and breakdown during growth. Also protein deposition efficiency, which was calculated from simulated protein deposition and protein synthesis, showed a difference in dependence on the protein qualify of feed protein. The protein deposition efficiency was higher in pigs fed with high quality protein, especially at the simulation time 30th day. But this phenomena disappeared with growth, so on the 150th day of growth, the protein deposition of the high feed protein quality was lowest among the three different quality of feed protein. The simulated total requirement of the 10 essential amino acids for the growth of pigs was 28.1(g/100g protein), similar to NRC. The requirement of lysine was 4.2(g/100g protein).

  • PDF

Effect of Modified Casein to Whey Protein Ratio on Dispersion Stability, Protein Quality and Body Composition in Rats

  • Jeong, Eun Woo;Park, Gyu Ri;Kim, Jiyun;Yun, So-Yul;Imm, Jee-Young;Lee, Hyeon Gyu
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.855-868
    • /
    • 2021
  • The present study was designed to investigate the effects of protein formula with different casein (C) to whey protein (W) ratios on dispersion stability, protein quality and body composition in rats. Modification of the casein to whey protein (CW) ratio affected the extent of protein aggregation, and heated CW-2:8 showed a significantly increased larger particle (>100 ㎛) size distribution. The largest protein aggregates were formed by whey protein self-aggregation. There were no significant differences in protein aggregation when the CW ratios changed from 10:0 to 5:5. Based on the protein quality assessment (CW-10:0, CW-8:2, CW-5:5, and CW-2:8) for four weeks, CW-10:0 showed a significantly higher feed intake (p<0.05), but the high proportion of whey protein in the diet (CW-5:5 and CW-2:8) increased the feed efficiency ratio, protein efficiency ratio, and net protein ratio compared to other groups. Similarly, CW-2:8 showed greater true digestibility compared to other groups. No significant differences in fat mass and lean mass analyzed by dual-energy x-ray absorptiometry were observed. A significant difference was found in the bone mineral density between the CW-10:0 and CW-2:8 groups (p<0.05), but no difference was observed among the other groups. Based on the results, CW-5:5 improved protein quality without causing protein instability problems in the dispersion.

Effects of Sulfur Fertilizer on the Expression of 11S and 7S Seed Storage Proteins of Soybean

  • El-Shemy Hany A.;Nguyen Nguyen Tran;Ahmed Sherif H.;Fujita Kounosuke
    • Journal of Plant Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • The differential response of soybean cultivars with or without sulfur (S) application was observed under fold conditions. Plant biomass decreased by sulfur deficiency but the reduction was less in Bragg variety about 26 % relative to the control than other ones over 45%, probably due to less reduction in loaves and pods. The photosynthetic rate of Bragg cultivar was also unaffected by the absence of sulfur application while it depressed in other lines. Soybean cultivars were compared in terms of storage protein, protein quality and biomass production by application of sulfur nutrition. The storage protein concentration tended to decrease without sulfur application in all the cultivars, however the differential response of protein quality only by 11S/7S ratio to sulfur nutrition status was observed: For instance, Bragg cultivar had higher biomass and protein production but protein quality decreased at sulfur deficiency. On the other hand, biomass and protein production in other cultivars remained louver at sulfur deficiency but protein quality differed genetically in spite of sulfur nutrition status. These results suggest that the response of soybean to sulfur nutrition is controlled by genotypic difference and sulfur supply status.

In vitro and In vivo Protein Qualities of Boiled Fish Extracts with Spicy Vegetables

  • Ryu, Hong-Soo;Moon, Jeong-Hae;Hwang, Eun-Young;Cho, Hyun-Kyoung;Lee, Jong-Yeoul
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.1
    • /
    • pp.23-27
    • /
    • 1999
  • To evaluate the quality of fish extracts with spicy vegetables (garlic, onion and ginger) in suppressing fishy oder, fish extracts of crucian carp, loach, bastard halibut and jacopever were processed at 100 $^{\circ}C$ for 6 hours, and their in vitro and in vivo protein qualities were determined . Protein and total lipid contents were closely related to the degree of discarding floated lipid on fish extracts and the kinds of added apicy vegetables . Boiling (10$0^{\circ}C$) , appeared to improve in vitro protein qualities slightly more than hydrocooking (11$0^{\circ}C$), but those with mild processing tended to result in better protein qualities than high temperature cooking (136-14$0^{\circ}C$). Spicy vegetables did not have remarkable effects on improving in vitro protein quality parameters. Fish extracts with 10% ginger were generally higher in in vitro protein quality than with the other vegetables . In spite of higher in vivo protein digestibility of fish extracts containing spicy vegetables processed under mild conditions(10$0^{\circ}C$), PERs of those extracts were not higher htan those of extranct processed at high temperature.

  • PDF

Effects of Dietary Lamb and Beef Meat on the Growth and Protein Utilization in Rats (양고기와 쇠고기의 식이가 흰쥐의 성장과 단백질 이용성에 미치는 영향)

  • 박선희
    • Journal of Nutrition and Health
    • /
    • v.24 no.1
    • /
    • pp.20-29
    • /
    • 1991
  • This study was carried out to compare the protein quality of lamb and beef meat. by feeding to growing rats. Sixty weanling rats, 30 males and 30 females, were blocked into 12 groups(6 gruops of males and 6 groups of females). They were fed casein. beef, or lamb as a protein source at two levels, 6 and 15%, for 5 weeks. The amount of food intake. food efficiency ratio, protein efficiency ratio. body weight gain. and the weights of skeletal muscles and liver were measured. Nitrogen retention, protein content in the liver and skeletal muscles, and the levels of protein and cholesterol in the serum were also assayed. Summarzing the results, there were no significant differences between lamb and beef on the growth and nitrogen utilization in the rats fed same percentage of protein diet. However. rats fed 15% protein diet showed significantly higher growth rate than those fed 6%. Therefore, it can be concluded that lamb is as good a protein food as beef in terms of protein quality.

  • PDF

Rapid In Vitro Methods for Protein Evaluation (단백질(蛋白質) 품질평가(品質評價)를 위(爲)한 신속방법(迅速方法))

  • Ryu, Hong-Soo;Lee, Kang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.2
    • /
    • pp.202-213
    • /
    • 1985
  • The protein nutritional quality of foods has become an important factor to food processors with the advent of nutritional labeling regulations for foods. Then, as is true today, the officially approved assay for protein nutritional quality was the rat based protein efficiency ratio(PER) bioassay. The PER bioassay requires a minimum of 28 days to performe, and is therefore not applicable to routine quality assurance use by the food industry. Within the past ten years there has been a research emphasis placed on the development of rapid, inexpensive, biological and/or chemical based assays for protein nutritional quality. It was hoped that if a rapid assay could be developed and thoroughly tested, it could be used in lieu of the PER bioassay in the day-to-day quality assurance screening of food ingredients and products. The rapid assays developed in the hope of attaining this goal have been based on microorganisms, proteolytic enzymes, and amino acid profiles, as well as combinations of the above. In this review, it will be described and briefly discussed many of procedures which had contributed conceptually as well as practically to the development of in vitro methods for the evaluation of protein quality. Special emphasis will be placed on the C-PER(computed protein efficiency ratio) assay which combines data from in vitro protease digestion and amino acid composition to predict protein nutritional quality designed by Satterlee et al. (1980), and the DC-PER(discriminant computed PER) which is a method of estimating protein quality based on rat assay and in vitro digestibility obtained using solely essential amino acid data will be also introduced.

  • PDF

Effects of protein content and the inclusion of protein sources with different amino acid release dynamics on the nitrogen utilization of weaned piglets

  • Hu, Nianzhi;Shen, Zhiwen;Pan, Li;Qin, Guixin;Zhao, Yuan;Bao, Nan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.260-271
    • /
    • 2022
  • Objective: We aimed to investigate the effect of the differing amino acid (AA) release dynamics of two protein sources on the growth performance, nitrogen deposition, plasma biochemical parameters, and muscle synthesis and degradation of piglets when included in their diets at normal and low concentrations. Methods: Forty-eight piglets (Duroc×Landrace×Large White) with initial body weight of 7.45±0.58 kg were assigned to six groups and fed one of 6 diets. The 6 dietary treatments were arranged by 3×2 factorial with 3 protein sources and 2 dietary protein levels. They are NCAS (a normal protein content with casein), NBlend (a normal protein content with blend of casein and corn gluten meal), NCGM (a normal protein content with corn gluten meal), LCAS (a low protein content with casein), LBlend (a low protein content with blend of casein and corn gluten meal), LCGM (a low protein content with corn gluten meal). The release dynamics of AA in these diets were determined by in vitro digestion. The digestibility, utilization and biological value of nitrogen in piglets were determined by micro Kjeldahl method. Plasma insulin was measured by enzyme-linked immunosorbent assay kits. The protein expression of mediators of muscle synthesis and degradation was determined by western blotting. Results: Although the consumption of a low-protein diet supplemented with crystalline AA was associated with greater nitrogen digestion and utilization (p<0.05), the final body weight, growth performance, nitrogen deposition, and phosphorylation of ribosomal protein S6 kinase 1 and eIF4E binding protein 1 in the muscle of pigs in the low-protein diet-fed groups were lower than those of the normal-protein diet-fed groups (p<0.05) because of the absence of non-essential AA. Because of the more balanced release of AA, the casein (CAS) and Blend-fed groups showed superior growth performance, final body weight and nitrogen deposition, and lower expression of muscle ring finger 1 and muscle atrophy F-box than the CGM-fed groups (p<0.05). Conclusion: We conclude that the balanced release of AA from CAS containing diets and mixed diets could reduce muscle degradation, favor nitrogen retention, % intake and improve growth performance in pigs consuming either a normal- or low-protein diet.

Perspectives of Breeding for High Protein Quantity and High Protein Quality of Soybeans (콩 양질ㆍ고단백 품종 육성방향)

  • Chung, Kil-Woong;Hong, Eun-Hi;Kim, Seok-Dong;Hwang, Young-Hyun;Lee, Yeong-Ho;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.39-47
    • /
    • 1988
  • Soybean grain is most widely used and soybean crop produces most high protein per area among crops. To meet rapid increase of human population and supply protein in safety. soybean has considered more and more important crop. And it has been emphasizing that high quality and high protein soybean breeding must be made efforts in future. Many papers related to soybean breeding for high quality and protein and soybean protein composition have suggested the problems to do in future. Soybean germplasm collection. classification and conservation should be continuously performed, and it is emphasized that wild type of soybeans (G. soja) be considered to use in breeding for high protein varieties. Selections would be better emphasized in first yield and therefore high yield of protein per area. Selection for high protein would be secondary criterion. High protein lines with high yielding potential could be selection from certain populations, and breeders should consider this phenomenon in procedure of selection. Heritability of protein percent is relatively high and genetic gain of increment of protein percent is large. Soybean protein which is comprised 70 to 90% of globulin is constituted mostly 11S and 7S proteins. Sulfur-containing amino acids, methionine and cysteine, are identified to contain more in 11S protein than 7S protein. High 11S germplasm should be desirable to use in crossing plan, and selection of high ratio of 11S/7S lines be better in development of high quality varieties.

  • PDF

Influences of Protein Characteristics on Processing and Texture of Noodles from Korean and US Wheats

  • Kang, Chon-Sik;Seo, Yong-Won;Woo, Sun-Hee;Park, Jong-Chul;Cheong, Young-Keun;Kim, Jung-Gon;Park, Chul-Soo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • Protein characteristics of Korean wheat were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles compared to US wheat flours with various wheat classes and commercial flours for making noodles. Protein quality parameters, which were independent of protein content and included SDS sedimentation volume with constant protein weight, mixograph mixing time and proportion of 50% 1-propanol insoluble protein, of Korean wheat flours with 2.2+12 subunits in high molecular weight glutenin subunit compositions were comparable to those of commercial flours for making noodles. Parameters related to noodle making, including optimum water absorption, thickness and color of noodle dough sheet, correlated with protein content and related parameters, including SDS sedimentation volume with constant flour weight, mixograph water absorption and gluten yield. No significant relationship was found in protein parameters independent of protein content. Hardness of cooked noodles from Korean wheats was lower than that of US wheat flours compared to similar protein content of commercial noodle flours. Adhesiveness, springiness and cohesiveness of cooked noodles from Korean wheats were similar to US wheat flours. Hardness of cooked noodles correlated with protein content and related parameters.

  • PDF