• Title/Summary/Keyword: protein phosphatase inhibition

Search Result 97, Processing Time 0.028 seconds

Screening of Marine Microbial Extracts for Tyrosine Phosphatase 1B Inhibitors

  • Sohn, Jae-Hak;Park, Sun Jung;Seo, Changon;Chun, Bokyung;Oh, Hyuncheol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.230-233
    • /
    • 2007
  • Protein tyrosine phosphatase 1B (PTP1B) acts as a negative regulator of insulin signaling, and selective inhibition of PTP1B has served as a potential drug target for the treatment of type 2 diabetes. As part of our searching for PTP1B inhibitors from natural products, the extracts of marine microorganisms were screened for the inhibitory effects on the activity of protein tyrosine phosphatase 1B (PTP1B). Among the tested 304 extracts, 29 extracts exhibited inhibition rate ranging 40.1 - 83.6 % against PTP1B at the concentration level of $30{\mu}g/mL$.

  • PDF

Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

  • Niu, Mingshan;Sun, Yan;Liu, Bo;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured $in$ $vivo$ phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its $in$ $vivo$ PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions.

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Screening of Bioactive Materials from Freshwater Microalgae (담수산 미세조류로부터 생리활성물질의 탐색)

  • Lee, Wan-Seok;Choi, Ae-Ran;Ahn, Chi-Yong;Oh, Hyun-Cheol;Ahn, Jong-Seog;Oh, Hee-Mock
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.271-276
    • /
    • 2004
  • One hundred and fifty four micro algal strains, newly isolated from nationwide freshwaters in Korea, were screened for their anticancer, ant diabetic, and antibiotic activities. The micro algal strains were cultured with different nutritional conditions that were divided into 4 groups as follows; a normal Allen medium, nitrogen (N)-limited medium, phosphorus (P)-limited medium, and N and P-limited medium. Algal biomass was extracted with a mixture of acetone:H₂O (1:1, v:v) and the extracts were used for the screening of bioactive materials. Anticancer, ant diabetic, and antibiotic materials were screened by the methods of vaccinia Hl-related protein tyrosine phosphates (VHR DS-PTPase) inhibition, protein tyrosine phosphates 1B (PTP1B) inhibition, and paper disk. The inhibition activity of VHR DS-PTPase was observed in 18 strains, having a maximum 79% inhibition from Anabaena affinis and the inhibition activity of PTP1B was observed in 9 strains, having a maximum 97% from Sphaerocystis schroeteri. Microcystis aeruginosa incubated in an N and P-limited medium showed antibiotic activity in 8 species out of 13 pathogenic bacteria. As a whole, it seemed that the stressed condition such as N and/or P limitation increased the production of bioactive materials in micro algae.

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • v.42 no.7
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

Screening of Medicinal Herbs for Inhibitory Activity against Protein Tyrosine Phosphatase 1B (생약의 Protein Tyrosine Phosphatase 1B 저해활성 검색)

  • Lee, Woo-Jung;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.227-231
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B) is predicted to be therapeutic target in treatment of type 2 diabetes and obesity. Thus, in order to search for PTP1B inhibitors, we screened the inhibitory activity of PTP1B in the water extracts of 84 medicinal herbs. Among them, the extracts of Pini Folium, Magnoliae Cortex, Artemisiae asiaticae Herba, Schizonepetae Herba, Menthae Herba, Mume Fructus, Cimicifugae Rhizoma, and Amomi Cardamomi Fructus showed relatively significant (58-68%) inhibitory activity against PTP1B. Especially, the methylene chloride fraction of the methanol extract of Menthae Herba (81% inhibition at 30 ${\mu}g$/ml) showed more potent inhibitory activity against PTP1B than others.

2D-QSAR and HQSAR on the Inhibition Activity of Protein Tyrosine Phosphatase 1B with Oleanolic Acid Analogues

  • Chung, Young-Ho;Jang, Seok-Chan;Kim, Sang-Jin;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.52-57
    • /
    • 2007
  • Quantitative structure-activity relationships (QSARs) on the inhibition activities by oleanolic acid analogues (1-19) as a potent inhibitor against protein tyrosine phosphatase-1B were studied quantitatively using 2D-QSAR and HQSAR methodologies. The inhibition activity was dependent on the variations of $R_{4-}$substituent, and as shown in 2D-QSAR model ($r^2=0.928$), it has a tendency to increase as the negative Randic Indice (RI) goes up. The size of the molecular fragments used in HQSAR varied from five to eight. The fragment distinctions had the best statistic value, whose predictability is $q^2=0.785$ and correlation coefficient is $r^2=0.970$, on condition of connections. From the atomic contribution maps, the factor that contributes to the inhibition activities is the $C_{15}{\sim}C_{17}$ bond in the D ring. From the analysis result of these two the models, the structural distinctions and descriptors that contribute to the inhibition activities were obtained.