• Title/Summary/Keyword: protein microarray

Search Result 347, Processing Time 0.03 seconds

cDNA Microarray Analysis of Gene Expression in Pig Spleen Lymphocytes in Response to Extract of Raspberry (분자 추출물을 돼지의 비장 면역세포에 처리시 cDNA Microarray를 이용한 유전자 발현분석)

  • Chung, Chung-Soo;Choi, Young-Sook;Lim, Hee-Kyong;O, Yun-Genel;Mandal, Prabhat Kumar;Choi, Kang-Duk
    • Journal of Animal Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.849-856
    • /
    • 2008
  • The present study was undertaken to investigate specific immune response of Rubus coreanus Miquel (raspberry) in pig spleen lymphocytes and gene expression induced by the extracts of raspberry using gene chip technology. The 70% ethyl alcohol extracts of raspberry were treated to pig spleen lymphocytes. The extracts of raspberry stimulated the proliferation of splenocytes and increased the population of CD3 & CD4 T-cells and B-cells in pig spleen lymphocytes. The extracts of raspberry improved immune response by increasing the viability of splenocytes. In microarray study we found eight genes were significantly up- regulated by the extracts of raspberry in pig splenocytes, including genes known to be involved in cell structure and immune response, particularly microtubule-associated protein 4, cytoplasmic dynein heavy chain, tumor necrosis factor alpha, lymphotoxin-beta receptor precursor. However, ten genes were down- regulated by the extracts of raspberry treatment.

SLA Genetic Polymorphism and Large Scale Gene Expression Profiling of Cloned SNU Miniature Pigs Derived from Same Cell Line

  • Yeom, Su-Cheong;Koo, Ok Jae;Park, Chung-Gyu;Lee, Byeong-Chun;Lee, Wang-Jae
    • Reproductive and Developmental Biology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In order to investigate genetic stability and gene expression profile after cloning procedure, two groups of cloned pigs were used for swine leukocyte antigen (SLA) gene nucleotide alteration and microarray analyses. Each group was consist of cloned pigs derived from same cell line (n=3 and 4, respectively). Six SLA loci were analyzed for cDNA sequences and protein translations. In total, 16 SLA alleles were identified and there were no evidence of SLA nucleotide alteration. All SLA sequences and protein translations were identical among the each pig in the same group. On the other hand, microarray assay was performed for profiling gene expression of the cloned pigs. In total, 43,603 genes were analyzed and 2,150~4,300 reliably hybridized spots on the each chip were selected for further analysis. Even though the cloned pigs in the same group had identical genetic background, 18.6~47.3% of analyzed genes were differentially expressed in between each cloned pigs. Furthermore, on gene clustering analysis, some cloned pigs showed abnormal physiological phenotypes such as inflammation, cancer or cardiomyopathy. We assumed that individual environmental adaption, sociality and rank in the pen might have induced these different phenotypes. In conclusion, the results of the present study indicate that SLA locus genes appear to be stable following SCNT. However, gene expressions and phenotypes between cloned pigs derived from the same cell line were not identical even under the same rearing conditions.

Transcriptome analysis and promoter sequence studies on early adipogenesis in 3T3-L1 cells

  • Kim, Su-Jong;Lee, Ki-Hwan;Lee, Yong-Sung;Mun, Eun-Gyeng;Kwon, Dae-Young;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • To identify regulatory molecules which play key roles in the development of obesity, we investigated the transcriptional profiles in 3T3-L1 cells at early stage of differentiation and analyzed the promoter sequences of differentially regulated genes. One hundred and sixty-one (161) genes were found to have significant changes in expression at the 2nd day following treatment with differentiation cocktail. Among them, 86 transcripts were up-regulated and 75 transcripts were down-regulated. The 161 transcripts were classified into 10 categories according to their functional roles; cytoskeleton, cell adhesion, immune, defense response, metabolism, protein modification, protein metabolism, regulation of transcription, signal transduction and transporter. To identify transcription factors likely involved in regulating these differentially expressed genes, we analyzed the promoter sequences of up- or - down regulated genes for the presence of transcription factor binding sites (TFBSs). Based on coincidence of regulatory sites, we have identified candidate transcription factors (TFs), which include those previously known to be involved in adipogenesis (CREB, OCT-1 and c-Myc). Among them, c-Myc was also identified by our microarray data. Our approach to take advantage of the resource of the human genome sequences and the results from our microarray experiments should be validated by further studies of promoter occupancy and TF perturbation.

Changes of Gene Expression in NIH3T3 Cells Exposed to Osmotic and Oxidative Stresses

  • Lee, Jae-Seon;Jung, Ji-Hun;Kim, Tae-Hyung;Seo, Jeong-Sun
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2004
  • Cells consistently face stressful conditions, which cause them to modulate a variety of intracellular processes and adapt to these environmental changes via regulation of gene expression. Hyperosmotic and oxidative stresses are significant stressors that induce cellular damage, and finally cell death. In this study, oligonucleotide microarrays were employed to investigate mRNA level changes in cells exposed to hyperosmotic or oxidative conditions. In addition, since heat shock protein 70 (HSP70) is one of the most inducible stress proteins and plays pivotal role to protect cells against stressful condition, we performed microarray analysis in HSP70-overexpressing cells to identify the genes expressed in a HSP70-dependent manner. Under hyperosmotic or oxidative stress conditions, a variety of genes showed altered expression. Down­regulation of protein phosphatase1 beta (PP1 beta) and sphingosine-1-phosphate phosphatase 1 (SPPase1) was detected in both stress conditions. Microarray analysis of HSP70-overexpressing cells demonstrated that diverse mRNA species depend on the level of cellular HSP70. Genes encoding Iysyl oxidase, thrombospondin 1, and procollagen displayed altered expression in all tested conditions. The results of this study will be useful to construct networks of stress response genes.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

Transcriptome Analysis to Characterize the Immune Response of NecroX-7 in Mouse CD4+ T Cells

  • Kim, Eun-Jung
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2015
  • NecroX-7 is a novel small compound of the NecroX series based on the indole moiety, which has potent cytoprotective and antioxidant properties. We previously detected potential immune regulatory effects of NecroX-7 in immune related diseases like Graft-versus-Host Disease. However, the function and the underlying mechanisms of immunological effects of NecroX-7 in the immune system have not been well established. In this study, we investigated the immune response characterization of differentially expressed genes of NecroX-7 administration in $CD4^+$ T cells by microarray analysis. $CD4^+$ T cells stimulated with NecroX-7 ($40{\mu}M$) or vehicle for 72 hours resulted in the identification of 337 differentially expressed genes (1.5 fold, P<0.05) by expression profiling analysis. Twenty eight of the explored NecroX-7-regulated genes were related to immune system processes. These genes were validated by quantitative real-time PCR. The most significant genes were glutathione reductase, eukaryotic translation elongation factor 1, lymphotoxin-alpha, heat shock protein 9 and chloride intracellular channel protein 4. These findings demonstrate the strongly immune response of NecroX-7 in $CD4^+$ T cells, suggesting that cytoprotection and immune regulation may underlie the critical aspects of NecroX-7 exposure.

Molecular Cloning, Identification and Characteristics of a Novel Isoform of Carbamyl Phosphate Synthetase I in Human Testis

  • Huo, Ran;Zhu, Hui;Lu, Li;Ying, Lanlan;Xu, Min;Xu, Zhiyang;Li, Jianmin;Zhou, Zuomin;Sha, Jiahao
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2005
  • A gene coding a novel isoform of carbamyl phosphate synthetase I (CPS1) was cloned from a human testicular library. As shown by cDNA microarray hybridization, this gene was expressed at a higher level in human adult testes than in fetal testes. The full length of its cDNA was 3831 bp, with a 3149 bp open reading frame, encoding a 1050-amino-acid protein. The cDNA sequence was deposited in the GenBank (AY317138). Sequence analysis showed that it was homologous to the human CPS1 gene. The putative protein contained functional domains composing the intact large subunit of carbamoyl phosphate synthetase, thus indicated it has the capability of arginine biosynthesis. A multiple tissue expression profile showed high expression of this gene in human testis, suggesting the novel alternative splicing form of CPS1 may be correlated with human spermatogenesis.

Signal Transduction-related Gene Expression Analysis in MCF-7 followed by $\gamma$-radiation (MCF-7 세포주에서$\gamma$선에 의한 세포신호 전달 관련 유전자의 발현 양상의 분석)

  • 박지윤;황창일;박웅양;김진규;채영규
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.52-55
    • /
    • 2003
  • There is considerable evidence that ionizing radiation (IR) mediates checkpoint control, repair and cell death. In this study, we have used a high density microarray hybridization approach to characterize the transcriptional response of human breast carcinoma MCF-7 cell line to ${\gamma}$-radiation, such as 4 Gy 4 hr, 8 Gy 4 hr, and 8 Gy 12 hr. We found that exposure to ${\gamma}$-ray alters by at least a $log_2$ factor of 1.0 the expression of 115 known genes. Of the 66 genes affected by ${\gamma}$-radiation, 49 are down-regulated. In our results, the cellular response to irradiation includes induction of the c-jun and EGR1 early response genes. The present work has examined potential cytoplasmic signaling cascades that transduce IR-induced signals to the nucleus. 40S ribosomal protein s6 kinase modulates the activities of the mitogen activated protein kinase (MAPK) and c-Jun $NH_2$-terminal kinase (JNK1) cascades in human monocytic leukemia (U937/pREP4) cells. 14-3-3 family members are dimeric phosphoserine -binding proteins that participate in signal transduction and checkpoint control pathways.

Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

  • Yu, Ji-Hoon;Lim, Joo-Weon;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.409-416
    • /
    • 2009
  • Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with $10^{-8}$ M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.

Microarray Analysis of the Gene Expression Profile in Diethylnitrosamine-induced Liver Tumors in Mice

  • Jung Eun-Soo;Park Jung-Duck;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.134-142
    • /
    • 2005
  • Liver cancer is a leading cause of tumor-related mortality, Diethylnitrosamine (DEN) is one of the most extensively studied hepatic carcinogens to date. In this study, the mRNA expression profile in DEN-induced liver tumors in mice was analyzed using DNA microarrays. We report increased expression of genes that participate in hypoxia response, including metallothionein 1 (Mt1), metallothionein 2 (Mt2), fatty acid synthase (Fasn), transferrin (Trf), adipose differentiation-related Protein (AdfP) and ceruloplasmin (CP), as well as those involved in predisposition and development of cancers, such as cytochrome P450 2A5 (Cyp2a5), alpha 2-HS-glycoprotein (Ahsg) and Jun-B oncogene (Junb). The hepatic iron regulatory peptide, hepcidin (Hampl), was downregulated in DEN-stimulated liver tumors. Expression of tumor suppressor genes, such as tripartite motif protein 13 (Trim13), was decreased under these conditions. The data collectively indicate that DEN-induced tumor development can be exploited as a possible model for liver cancer, since this process involves various genes with important functions in hepatic carcinogenesis.

  • PDF