• Title/Summary/Keyword: protein kinases

Search Result 734, Processing Time 0.037 seconds

Pistacia weinmannifolia root exerts a protective role in ovalbumin-induced lung inflammation in a mouse allergic asthma model

  • Jae-Won Lee;Jae-Hong Min;Min-Gu Kim;Seong-Man Kim;Ok-Kyoung Kwon;Tae Kyu Oh;Jae Kyoung Lee;Tae Young Kim;Sang Woo Lee;Sangho Choi;Wan-Yi Li;Hyung Won Ryu;Kyung-Seop Ahn;Sei-Ryang Oh
    • International Journal of Molecular Medicine
    • /
    • v.44 no.6
    • /
    • pp.2171-2180
    • /
    • 2019
  • Pistacia weinmannifolia (Anacardiaceae) has been used in herbal medicine for the treatment of influenza, dysentery and enteritis in China. It was recently observed that P. weinmannifolia root extract (PWRE) exerts anti-inflammatory effects both in in vitro and in vivo models. Based on the results from previous studies, the present study investigated the protective effect of PWRE on airway inflammation and mucus hypersecretion. Treatment with PWRE significantly decreased the number of eosinophils and the levels of Th2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13, in the bronchialveolar lavage fluid (BALF) of OVA-exposed mice. PWRE decreased the high serum levels of total and OVA-specific immunoglobulin E. PWRE also effectively inhibited the influx of inflammatory cells into the lung, as well as airway mucus hypersecretion. In addition, the increased level of monocyte chemoattractant protein-1 was significantly decreased with the PWRE treatment in the BALF of OVA-exposed mice and in lipopolysaccharide-stimulated RAW264.7 macrophages. These protective effects of PWRE on OVA-induced pulmonary inflammation were accompanied by the downregulation of mitogen associated protein kinases and nuclear factor-κB activation. Thus, the results from the present study indicate that PWRE could be valuable adjuvant for the treatment of asthma.

Role of PKR and EGR-1 in Induction of Interleukin-S by Type B Trichothecene Mycotoxin Deoxynivalenol in the Human Intestinal Epithelial Cells (B형 트리코테센 곰팡이 독소 데옥시니발레놀에 의한 인체 장관 상피세포 염증성 인터루킨 8유도에서의 PKR과 EGR-1의 상호 역할 규명)

  • Park, Seong-Hwan;Yang, Hyun;Choi, Hye-Jin;Park, Yeong-Min;Ahn, Soon-Cheol;Kim, Kwan-Hoi;Lee, Soo-Hyung;Ahn, Jung-Hoon;Chung, Duk-Hwa;Moon, Yu-Seok
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.949-955
    • /
    • 2009
  • Mucosal epithelia sense external stress signals and transmit them to the intracellular cascade responses. Ribotoxic stress-producing chemicals such as deoxynivalenol (DON) or other trichothecene mycotoxins have been linked with gastrointestinal inflammatory diseases by Fusarium-contamination. The purpose of this study was to test the hypothesis that DON evokes the epithelial sentinel signals of RNA-dependent protein kinase (PKR) and early growth response gene 1 (EGR-1), which together contribute to the pro-inflammatory cytokine interleukin 8 (IL-8) in human intestinal epithelial cells. PKR suppression by the dominant negative PKR expression attenuated DON-stimulated interleukin-8 production. Moreover, 1L-8 transcriptional activation by DON was also reduced by PKR inhibition in the human intestinal epithelial cells. Treatment with the PKR inhibitor also suppressed EGR-1 promoter activity, mRNA and protein induction, although mitogen-activated protein (MAP) kinases such as extracellular signal-regulated protein kinases (ERK) 1/2, p38, c-Jun N-terminal Kinase (INK) were little affected or even enhanced in presence of a PKR inhibitor. These patterns were also compared in the EGR-1-suppressed cells, which showed much more suppressed production of 1L-8. All things taken into consideration, DON-activated sentinel signals of EGR-1 via PKR mediated interleukin-8 production in human intestinal epithelial cells, which provide insight into the possible general mechanism associated with mucosal inflammation as an intestinal toxic insult by ribotoxic trichothecene mycotoxins.

Effect of Various Factors on Early THP-1 Cell Adhesion Induced Phorbol 12-Myristate 13-Acetate (PMA) (Phorbol 12-myristate 13-acetate (PMA) 처리로 유도되는 THP-1 세포의 초기 부착에 관한 다양한 인자의 효과)

  • Jo, Yong-Sam;Shin, Ji-Hyun;Choi, Tae-Saeng
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.952-957
    • /
    • 2008
  • We evaluated the effects of various factors (e.g., serum, inhibitors of protein synthesis, and cytoskeleton and protein kinases) on early PMA-induced THP-1 cell adhesion using an adhesion assay with Sulforhodamine B (SRB) staining, which was used to assess the proliferation of the attached cells. THP-1 cell adhesion to a plastic substrate was detected 1 hr after exposure to Phorbol 12-Myristate 13-Acetate (PMA) and peaked after 18 hr. At concentrations > 25 nM PMA, the level of adhesion did not change. Based on our preliminary results, we used 25 nM PMA and 5 hr of culture as standard assay conditions. Early PMA-induced cell adhesion was not affected by the presence of serum or PD 98059 in the culture medium, but was affected by the addition of PKC inhibitors and cycloheximide. In the presence of actin inhibitor with PMA, the cell adhesion increased when comparing with PMA treatment only. Thus, early PMA-induced adhesion of THP-1 cells does not require serum in the culture medium, MAP-kinase activation, or actin polymerization, but does require de novo protein synthesis and PKC activation. Our SRB-based cell adhesion assay may be used to screen other PKC inhibitors.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.

Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., (동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향)

  • Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.607-614
    • /
    • 2015
  • Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Inhibitory Effects of Syzygium aromaticum Ethanol Extracts on IgE Mediated RBL-2H3 cell Activation (IgE 매개 RBL-2H3 세포 활성화에 대한 정향 에탄올 추출물의 억제 효과)

  • Chung, Joon-Hee;Kim, Yong-Min;Park, Jong-Phil;Kim, Tae-Yeon;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Objectives : In this report, we investigated the effect of ethanol extract of Syzygium aromaticum(L.) Merr. & Perry.(SAE) on the RBL-2H3 cell-mediated allergic response and studied its possible mechanisms of action. Methods : Cytotoxicity on RBL-2H3 cell was evaluated by MTT assay. Anti-allergic activity of SAE was assessed by ${\beta}$-Hexosaminidase and Histamine secretion, ${\beta}$- Hexosaminidase and Histamine secretion were measured by ELISA assay. Evaluate the mechanisms of effect of SAE on the secretion of degranulate mediators, we examined the effect of SAE on the activation of mitogen-activated protein kinases using western blot analysis. Results : SAE had no cytotoxicity on rat basophilic leukemia cell(RBL-2H3). Moreover SAE dose-dependently inhibited RBL-2H3 cell degranulation and histamine release. SAE specifically blocked the IgE-induced p38 mitogen-activated protein kinase activation. Conclusions : Our findings provide evidence that Syzygium aromaticum ethanol extract inhibits mast cell derived allergic reaction, and also demonstrate the involvement of p38 MAPK phosphorylation.

Crystal Structure of an Activity-enhancing Mutant of DUSP19 (효소활성 증가 돌연변이를 함유한 DUSP19의 결정구조)

  • Ju, Da Gyung;Jeon, Tae Jin;Ryu, Seong Eon
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1140-1146
    • /
    • 2018
  • Dual-specificity phosphatases (DUSPs) play a role in cell growth and differentiation by modulating mitogen-activated protein kinases. DUSPs are considered targets for drugs against cancers, diabetes, immune diseases, and neuronal diseases. Part of the DUSP family, DUSP19 modulates c-Jun N-terminal kinase activity and is involved in osteoarthritis pathogenesis. Here, we report screening of cavity-creating mutants and the crystal structure of a cavity-creating L75A mutant of DUSP19 which has significantly enhanced enzyme activity in comparison to the wild-type protein. The crystal structure reveals a well-formed cavity due to the absent Leu75 side chain and a rotation of the active site-bound sulfate ion. Despite the cavity creation, residues surrounding the cavity did not rearrange significantly. Instead, a tightened hydrophobic interaction by a remote tryptophan residue was observed, indicating that the protein folding of the L75A mutant is stabilized by global folding energy minimization, not by local rearrangements in the cavity region. Conformation of the rotated active site sulfate ion resembles that of the phosphor-tyrosine substrate, indicating that cavity creation induces an optimal active site conformation. The activity enhancement by an internal cavity and its structural information provide insight on allosteric modulation of DUSP19 activity and development of therapeutics.

Synergistic antitumor activity of ST1571 and camptothecin in human cancer cells (Camptothecin 에 의한 ST1571 의 항암 활성 증강)

  • Kim, Mi-Ju;Lee, Sang-Min;Bae, Jae-Ho;Chung, Byung-Seon;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.748-755
    • /
    • 2007
  • The in vitro activity of ST1571, an inhibitor of the Abl group of protein-tyrosine kinases, alone or in combination with camptothecin (CPT), a specific topoisomerase I inhibitor, was evaluated against human cancer cells with different metastatic capacity and drug resistance potency. These cell lines showed different sensitivity to ST157 on growth inhibition, and the expression of DNA-dependent protein kinase (DNA-PK), which interacts constitutively with c-Abl, was significantly decreased in drug sensitive CEM and MCF-7 cells and poorly metastatic PC3 and KMl2 cells as compared with that of multidrug resistant CEM/MDR and MCF-7/MDR cells and highly metastatic PC3-MM2 and KM/L4a cells, respectively. These results suggest differential modulation of DNA-PK by ST1571 treatment in drug resistance and metastatic degree dependent manner. We showed that CPT as well as ST1571 significantly inhibits the expression of DNA-PK. The combined treatment with ST15fl and CPT revealed synergistic effect, and the effect was accompanied by inhibition of cell proliferation due to significant reduced expression of DNA-PK components, which resulted in CPT sensitizes human cancer cells resistant to ST1571. Therefore, the results of our study suggested that the suppression of DNA-PK using combination of ST1571 and CPT could be a novel molecular target for against drugresistant and metastatic cancer cells.

Eupatorium chinensis var. simplicifolium Root Extract Inhibits the Lipopolysaccharide-Induced Inflammatory Response in Raw 264.7 Macrophages by Inhibiting iNOS and COX-2 Expression (Raw 264.7 대식세포에서 등골나물 뿌리 추출물의 염증반응 조절 분자 iNOS와 COX-2 발현 억제 효과)

  • Lee, Jin-Ho;Kim, Dae-Hyun;Shin, Ji-Won;Park, Sae-Jin;Kim, Yoon-Suk;Shin, Yu-Su;Yu, Ji-Yeon;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1137-1144
    • /
    • 2012
  • Inflammation is a host defense mechanism that is activated in response to harmful substances or pathogens. However, an excessive inflammatory response is a problem in itself. Macrophages secrete inflammatory mediators such as nitric oxide (NO) or cytokines through various pathways such as the nuclear factor kappa B (NF-${\kappa}B$)-activated pathway after recognizing pathogen-like lipopolysaccharides (LPSs). In this study, anti-inflammatory effects of Eupatorium chinensis var. simplicifolium (EUC) extracts were investigated using LPS-stimulated RAW 264.7 macrophages. The EUC root extract significantly reduced NO production, inducible nitric oxide synthase (iNOS) expression, and cyclooxygenase-2 expression in a concentration-dependent manner. In addition, the EUC root extract reduced phosphorylation of mitogen-activated protein kinases and protein kinase B, which is upstream of NF-${\kappa}B$. The EUC root extract also reduced the degradation of inhibitory kappa B. These results indicate that EUC root extract exerts anti-inflammatory effects, which are mediated by inhibition of iNOS expression and the NF-${\kappa}B$ pathway.