• Title/Summary/Keyword: protein folding/refolding

Search Result 26, Processing Time 0.042 seconds

Characterization of Protein Disulfide Isomerase during Lactoferrin Polypeptide Structural Maturation in the Endoplasmic Reticulum

  • Lee, Dong-Hee;Kang, Seung-Ha;Choi, Yun-Jaie
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2001
  • A time-dependent folding process was used to determine whether or not protein disulfide isomerase (PDI) plays an important role in the maturation of nascent lactoferrin polypeptides. Interaction between lactoferrin and PDI was analyzed according to the co-immunoprecipitation of the two proteins. The results indicate that lactoferrin folding requires a significant interaction with PDI and its binding is relatively brief compared to other nascent polypeptides. The amount of lactoferrin interacting with PDI increases up to half a minute and sharply decreases beyond this time point. During the refolding process that follows reduction by DTT, lactoferrin polypeptides heavily interact with PDI and the interaction period was extended compared to the normal folding process. In terms of the temperature effect on PDI-lactoferrin interaction, PDI binds to lactoferrin polypeptides longer at a lower temperature (here, $25^{\circ}C$) than $37^{\circ}C$. The lactoferrin-PDI interaction was also studied in vitro. According to the in vitro experiment data, PDI was still functional in cell lysates assisting lactoferrin folding into the mature form. PDI interacts with lactoferrin polypeptides for an extended period during the folding in vitro. During the refolding process in vitro, intermolecular aggregates and refolding oligomers matured into a functional form after PDI binds to the lactoferrin. These results suggest that PDI provides a prolonged chaperoning activity in the refolding processes and that there appears to be a greater requirement for PDI chaperone activity in the refolding of lactoferrin polypeptides.

  • PDF

Protein Folding, Misfolding and Refolding of Therapeutic Proteins

  • Shin, Hang-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.237-243
    • /
    • 2001
  • Substantial progress has been made towards understanding the folding mechanisms of proteins in virto and in vivo even though the general rules governing such folding events remain unknown. This paper reviews current folding models along with experimental approaches used to elucidate the folding pathways. Protein misfolding is discussed in relation to disease states, such as amyloidosis, and the recent findings on the mechanism of converting normally soluble proteins into amyloid fibrils through the formation of intermediates provide an insight into understanding the pathogenesis of amyloid formation and possible cules for the development of therapeutic treatments. Finally, some commonly adopted refolding strategies developed over the part decade are summarized.

  • PDF

Protein Aggregation and Adsorption upon In vitro Refolding of Recombinant Pseudomonas Lipase

  • Lee, Young-Phil;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.456-460
    • /
    • 1996
  • Recombinant Pseudomonas lipase was used to study protein aggregation and adsorption upon in vitro refolding. Protein adsorption as well as aggregation was responsible for major side reactions upon in vitro refolding as a function of protein concentration. The optimal range of protein concentration was determined by the relative contribution of protein aggregation and adsorption. Above the optimal range, the yield of active lipase inversely correlated with protein aggregation, showing a competition between folding and aggregation. However, adsorption of protein rather than protein aggregation is thought to contribute as a major side reaction of the refolding process at sub-optimal concentrations at which the formation of aggregates should be more reduced. Protein aggregation was influenced by the amount of guanidine hydrochloride in the refolding solvent. The refolding temperature was a critical factor determining the extent of protein aggregation. The refolding yield was also affected by the dilution fold and dilution mode, which suggests that the refolding process might kinetically compete with the rate of mixing.

  • PDF

Initial Protein Concentration and Residual Denaturant Concentration Strongly Affect the Batch Refolding of Hen Egg White Lysozyme

  • Guise, Andrew D.;Chaudhuri, Julian B.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.410-418
    • /
    • 2001
  • The effects of several variables on the refolding of hen egg white lysozyme have been studied, Lysozyme was denatured in both urea, and guanidine hydrochloride(GuHCl), and batch refolded by dilution (100 to 1000 fold) into 0.1 M Tris-HCI, pH 8.2 mM EDTA 3 mM reduced glutathione and 0.3 mM oxidised glutathions. Refolding was found to be sensitive to temperature, with the highest refolding yield obtained at 50$\^{C}$. The apparent activation energy for lysozyme re-folding wasf ound to be 56kJ/mol, Refolding by dilution results in low concentrations of both de-naturant and reducing agent species. It was found that the residual concentrations obtained dur-ing dilution(100-fold dilution:[GuHCI]=0.06 mM, [DTT]=0.15 mM) were significant and could inhibit lysozyme refolding. This study has also shown that the initial protein concentration (1-10mg/mL) that is refolded is an important parameter. In the presence of residual GuHCl and DTT higher refolding yields were obtained when starting from higher initial lysozyme concentra-tions. This trend was reversed when residual denaturant components were removed from the re-folding buffer.

  • PDF

A Fusion Tag to Fold on: The S-Layer Protein SgsE Confers Improved Folding Kinetics to Translationally Fused Enhanced Green Fluorescent Protein

  • Ristl, Robin;Kainz, Birgit;Stadlmayr, Gerhard;Schuster, Heinrich;Pum, Dietmar;Messner, Paul;Obinger, Christian;Schaffer, Christina
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1271-1278
    • /
    • 2012
  • Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

In vitro Folding of Recombinant Hepatitis B Virus X-Protein Produced in Escherichia coli: Formation of Folding Intermediates

  • Kim, Sun-Ok;Sohn, Mi-Jin;Jeong, Soon-Seog;Shin, Jeh-Hoon;Lee, Young-Ik
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.521-528
    • /
    • 1999
  • The folding of recombinant hepatitis B virus X-protein (rHBx) solubilized from Escherichia coli inclusion bodies was investigated. By sequential dialysis of urea, rHBx was folded into its native structure, which was demonstrated by the efficacy of its transcriptional activation of the adenovirus major late promoter (MLP), fluorescence spectroscopy, and circular dichroism (CD) analysis. The decrease in CD values at 220 nm and a corresponding blue shift of the intrinsic fluorescence emission confirmed the ability of rHBx to refold in lower concentrations of urea, yielding the active protein. Equilibrium and kinetic studies of the refolding of rHBx were carried out by tryptophan fluorescence measurements. From the biphasic nature of the fluorescence curves, the existence of stable intermediate states in the renaturation process was inferred. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis further demonstrated the existence of these intermediates and their apparent compactness.

  • PDF

Folding Mechanism of WT* Ubiquitin Variant Studied by Stopped-flow Fluorescence Spectroscopy

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2877-2883
    • /
    • 2010
  • The folding kinetics of $WT^*$ ubiquitin variant with valine to alanine mutation at sequence position 26 (HubWA) was studied by stopped-flow fluorescence spectroscopy. While unfolding kinetics showed a single exponential phase, refolding reaction showed three exponential phases. The semi-logarithmic plot of urea concentration vs. rate constant for the first phase showed v-shape pattern while the second phase showed v-shape with roll-over effect at low urea concentration. The rate constant and the amplitude of the third phase were constant throughout the urea concentrations, suggesting that this phase represents parallel process due to the configurational isomerization. Interestingly, the first and second phases appeared to be coupled since the amplitude of the second phase increased at the expense of the amplitude of the first phase in increasing urea concentrations. This observation together with the roll-over effect in the second folding phase indicates the presence of intermediate state during the folding reaction of HubWA. Quantitative analysis of Hub-WA folding kinetics indicated that this intermediate state is on the folding pathway. Folding kinetics measurement of a mutant HubWA with hydrophobic core residue mutation, Val to Ala at residue position 17, suggested that the intermediate state has significant amount of native interactions, supporting the interpretation that the intermediate is on the folding pathway. It is considered that HubWA is a useful model protein to study the contribution of residues to protein folding process using folding kinetics measurements in conjunction with protein engineering.

Effect of temperature and denaturation conditions on protein folding assisted by GroEL-GroES chaperonin (GroEL-GroES 샤페로닌에 의한 단백질 접힘에 있어서 온도와 변성조건의 영향)

  • Bae, Yu-Jin;Jang, Kyoung-Jin;Jeon, Sung-Jong;Nam, Soo-Wan;Lee, Jae-Hyung;Kim, Young-Man;Kim, Dong-Eun
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.211-217
    • /
    • 2007
  • The goal of this study is to investigate effects of temperature and co-chaperonin requirement for in vitro protein refolding assisted by E. coli chaperone GroEL under permissive and nonpermissive temperature conditions. In vitro protein refolding of two denatured proteins was kinetically investigated under several conditions in the presence of GroEL. Effects of temperature and GroES-requirement on the process of prevention of protein aggregation and refolding of denatured protein were extensively monitored. We have found that E. coli GroEL chaperone system along with ATP is required for invitro refolding of unfolded polypeptide under nonpermissive temperature of $37^{\circ}C$. However, under permissive condition spontaneous refolding can occur due to lower temperature, which can competes with chaperone-mediated protein refolding via GroEL chaperone system. Thus, GroEL seemed to divert spontaneous refolding pathway of unfolded polypeptide toward chaperone-assisted refolding pathway, which is more efficient protein refolding pathway.

The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase

  • Khalifeh, Khosrow;Ranjbar, Bijan;Alipour, Bagher Said;Hosseinkhani, Saman
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.102-106
    • /
    • 2011
  • Thermodynamic stability and refolding kinetics of firefly luciferase and three representative mutants with depletion of negative charge on a flexible loop via substitution of Glu by Arg (ER mutant) or Lys (EK mutant) as well as insertion of another Arg in ER mutants (ERR mutant) was investigated. According to thermodynamic studies, structural stability of ERR and ER mutants are enhanced compared to WT protein, whereas, these mutants become prone to aggregation at higher temperatures. Accordingly, it was concluded that enhanced structural stability of mutants depends on more compactness of folded state, whereas aggregation at higher temperatures in mutants is due to weakening of intermolecular repulsive electrostatic interactions and increase of intermolecular hydrophobic interactions. Kinetic results indicate that early events of protein folding are accelerated in mutants.

Partially Folded States of Mutant Ubiquitin in Mild Denaturing Conditions

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1567-1572
    • /
    • 2009
  • Conformational change of ubiquitin variant with valine to alanine mutation at sequence position 26 was studied by varying solvent pH. Fluorescence emission spectra indicated that this variant ubiquitin has some residual structures in acidic and basic solution as compared to denaturant-induced unfolded state. Far-UV circular dichroic spectra indicated that the base-denatured state had more secondary structure than the acid-denatured state. Near-UV circular dichroic spectra indicated that the aromatic side-chains were in the relatively more rigid environment in the base-denatured state than those in the acid-denatured state. Although it appears that the more tertiary structure present in the base-denatured state, refolding reactions measured by stopped-flow fluorescence device suggest that both the acid- and base-denatured states occur before the major folding transition state. The acid- and base-denatured states are considered to reflect the early event of protein folding process.