• Title/Summary/Keyword: protein fatty acid

Search Result 1,713, Processing Time 0.029 seconds

The influence of the way of fat recovery from fleshing scrap on the acid value and fatty acid composition (플레싱 스크랩으로부터 유지 회수 방법이 산가 및 지방산 조성에 미치는 영향)

  • Shin, Soo-Beom;Min, Byung-Wook;Yang, Seung-Hun;Park, Min-Seok;Yang, Yung-Kon;Baik, Doo-Hyun;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.347-353
    • /
    • 2007
  • Fleshing scrap is a kind of wastes produced during leather making process and used in the test of manufacturing biodiesel. The early step of manufacturing biodiesel is fat recovery from fleshing scrap. Hence, we investigated the influence of the way of fat recovery on the fatty acid composition. We used three different recovery ways, that is chemical method by protein decomposition with acid/fat recovering, physical method by protein denaturalization with heat and vacuum/fat pressing, and biodiesel method by protein decomposition/fat recovering. The biological method yielded the best results in terms of appearance transparency. It was most effective to lower acid value. Also the recovered fat by biological method would be favorable methyl-ester reaction raw material for biodiesel because it contains more than 5% of oleic acid among unsaturated fatty acid.

Effect of Acylation on the Structure of the Acyl Carrier Protein P

  • Hyun, Ja-shil;Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2015
  • Acyl carrier protein is related with fatty acid biosynthesis in which specific enzymes are involved. Especially, acyl carrier protein (ACP) is the key component in the growing of fatty acid chain. ACP is the small, very acidic protein that covalently binds various intermediates of fatty acyl chain. Acylation of ACP is mediated by holo-acyl carrier protein synthase (ACPS), which transfers the 4'PP-moiety of CoA to the 36th residue Ser of apo ACP. Acyl carrier protein P (ACPP) is one of ACPs from Helicobacter plyori. The NMR structure of ACPP consists of four helices, which were reported previously. Here we show how acylation of ACPP can affect the overall structure of ACPP and figured out the contact surface of ACPP to acyl chain attached during expression of ACPP in E. coli. Based on the chemical shift perturbation data, the acylation of ACCP seems to affect the conformation of the long loop connecting helix I and helix II as well as the second short loop connecting helix II and helix III. The significant chemical shift change of Ile 54 upon acylation supports the contact of acyl chain and the second loop.

EFFECTS OF DIETARY PROTEINS ON THE ACTIVITIES OF LIPOGENIC ENZYMES IN THE LIVER OF GROWING CHICKS

  • Tanaka, K.;Okamoto, T.;Ohtani, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.123-128
    • /
    • 1992
  • In Experiment 1, when fasted chicks were fed diets containing various sources of protein for 3 days, the activities of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid synthetase, citrate cleavage enzyme and malic enzyme) in the liver of growing chicks were significantly lower in the soybean protein or gluten diet than in the casein or fish protein diet. Triglycride contents of the liver and plasma of chicks fed the casein or fish protein diet were significantly lower than that of those fed soybean protein or gluten diet. In Experiment 2, the effects of dietary amino acid mixture simulating casein or protein on the activities of hepatic lipogenic enzymes were examined. The activities of acetyl-CoA carboxylase and fatty acid synthetase in the liver of chicks fed the casein diet were significantly higher than that of those fed the soybean protein diet or two diets of amino acid mixtures. Furthermore, there were no significant differences between the two diets of amino acid mixture based on casein or soybean protein. However, the activities of malic enzyme and citrate cleavage enzyme tended to be lower in the soybean-type amino acid diet than in the casein-type amino acid diet. Thus, some effects can be ascribed to the protein itself and some to the amino acid composition of the protein sources.

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Study on the Preparation and Utilization of Sardine Protein (정어리 단백질 제조와 이용에 관한 연구)

  • 이경하;차월석;김종수
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.426-429
    • /
    • 2001
  • To utilize sardine protein more effectively, fish meat paste products mixing sardine protein concentrate with pollack frozen meat paste at the ratio 0%, 15%, 20% and 25% were produced, and the change of firmness, sensory evaluation and the properties of amino and fatty acid were investigated. The quantity of sardine protein and it was almost gushed out around one hour at 100$\^{C}$. The firmness of the meat paste product was found as 0.54% and was better when the concentrated sardine protein was added at the ratio 15% and it was much higher than just that of pollack meat paste. In that case, total amino acid was the highest as 90.701 mg/g from the point of view of the amino acid composition. In terms of the fatty acid composition, unsaturated fatty acid of raw and boiled sardine was 61,8634% and 61.9384% each. We could find out that the high value of C$\_$20:5/ and C$\_$22:6/ of raw sardine was 7.2931% and 27.7843%, respectively.

  • PDF

Chemical Composition of Lutus Seed(Nelumbo nucifera Gaertner) and Their Lipid and Protein Composition (연밥의 유지와 단백질의 구성에 관한 연구)

  • Shin, Dong-Hwa;Kim, In-Won;Kwon, Kyoung-Soohn;Kim, Myoung-Sook;Kim, Mi-Ra;Choi, Ung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1187-1190
    • /
    • 1999
  • Lotus seed(Nelumbo nucifera Gaertner), known as traditional medicine as an antifebrile, antipsychotic, and cantihypertensive agent, was analyzed the chemical composition of lipid and protein. The seed com posed of 12.2% moisture, 2.3% crude lipid, 19.5% crude protein, 61.3% carbohydrate, 2.1% crude fibre, and 4.1% ash. The lipid showed iodine value of 97.9 that is lower than that of soybean oil and sesame oil, and similar to peanut oil and cotton seed oil. The fatty acid composition of the oil were the highest in content of linoleic acid which occupied 58.3% and saturated vs unsaturated fatty acid was 20.9:79.1. Especially behenic acid content, 6.9%, was higher than other plant oils. Sixteen amino acids were detected in the protein from the seed and glutamic acid content was the highest as 4.5% in dehulled kernel. The portion of essential amino acid was 31.1%.

  • PDF

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Valorization of refined sardine oil in canned Sardina pilchardus

  • Hind Mkadem
    • Food Science and Preservation
    • /
    • v.31 no.4
    • /
    • pp.541-553
    • /
    • 2024
  • This study aimed to use refined sardine oil as a covering juice in canned Sardina pilchardus. The oil's fatty acid profile, acidity, peroxide value, and p-anisidine value were analyzed. The biochemical composition, histamine content, and bacteriological stability of the canned sardines were determined. The results showed that canned sardines contained 51.40 g of moisture, 27.87 g of fat, 17.91 g of protein, and 1.03 g of salt per 100 g net weight. The fatty acid composition included 10.35% polyunsaturated fatty acids, 8.86% saturated fatty acids, and 6.27% monounsaturated fatty acids, with the most abundant fatty acids being eicosapentaenoic acid (EPA), palmitic acid, oleic acid, myristic acid, and docosahexaenoic acid (DHA). This recipe provided 8.88 g/100 g (net weight) of EPA and DHA. These findings support the interest in using refined fish oil to enrich foods with essential marine fatty acids, highly recommended for their health benefits and leading to encouraging prospects for sardine canneries to develop new and nutritious value products.

Characterizing Sections of Elk Velvet Antler by pH and Mineral, Fatty Acid, and Amino Acid Composition

  • Dong-Kyo Kim;Sang-Hoon Lee;Eun-Do Lee;Hye-Jin Kim;Jinwook Lee;Sung-Soo Lee;Aera Jang;Kwan-Woo Kim
    • Journal of Food and Nutrition Research
    • /
    • v.9 no.3
    • /
    • pp.170-176
    • /
    • 2021
  • This study was conducted to determine the composition change in different sections of elk velvet antler at 90 days. The following parameters were analyzed: moisture, crude protein, crude fat, crude ash, crude fiber, pH, minerals (Ca, P, K, Mg, Fe, Mn, Zn, Cu, and Pb), amino acids, and fatty acids. Dry matter, crude fiber, and crude ash contents were higher in the base of the antlers and lower in the tip. In contrast, crude protein and crude fat contents were highest in the tip. Moisture content was high in the upper and medium sections of the antlers, but the difference was not significant. Calcium (Ca), phosphorus (P), and magnesium (Mg) contents were high in the base of the antlers, potassium (K) content was high in the tip of the antlers, and zinc (Zn) content showed no difference between antler sections. Saturated fatty acid content was highest in the base of the antlers, whereas unsaturated fatty acid content was highest in the tip. Among unsaturated fatty acids, monounsaturated fatty acid content was high in the tip of the antler, whereas polyunsaturated fatty acid content was high in the upper section of the antler. Essential amino acid content was highest in the upper section of the antler, whereas non-essential amino acid content was lowest in the base. Crude protein, crude fat, K, and unsaturated fatty acid content tended to be high in the tip of the antler, and essential amino acid and polyunsaturated fatty acid contents tended to be high in the upper section of the antler. The tip of the antler had the highest nutrient content. In order to prevent cardiovascular disease, consumption of a certain amount of polyunsaturated fatty acids and amino acids from the upper section of the antler could be beneficial in terms of pharmacological efficacy.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.