• 제목/요약/키워드: protein deterioration

검색결과 136건 처리시간 0.028초

Utilization of dietary protein, lipid and carbohydrate by flounder (Paralicthys olivaceus)

  • Lee, Sang-Min
    • 한국양식학회:학술대회논문집
    • /
    • 한국양식학회 2003년도 추계학술발표대회 논문요약집
    • /
    • pp.17-18
    • /
    • 2003
  • Although flounder is one of the most important marine fish for aquaculture in Korea, feeding the flounder in commercial farms depends mainly on moist pellet in which over 70% frozen fishes (e.g. frozen horse mackerel) are incorporated in its formulation. Therefore, for further expansion of flounder farming, it is essential to employ practical formulated feeds that can support reasonable growth. Development of nutritionally balanced and cost-effective feeds is dependant on the information about nutritional requirement and feed utilization of the species. Nutrient and energy source in feed are needed for the growth and maintenance of fish. Protein is probably the most important nutrient affecting fish growth and feed cost. Therefore, it is essential to determine the optimum dietary protein level for the growth of fish, both its high proportion in the feed and because it is the main factor in determining feed cost. Dietary energy level is also critical because protein source in the feed is utilized as an energy source when the feed deficient in energy is fed to fish, whereas when the feed excess in energy is fed to fish, feed consumption decreased and resulted in growth reduction due to lack of other necessary nutrients for normal growth. Improper dietary protein, energy levels and/or their ratio will lead to an increase of fish production cost and deterioration of water quality resulting from wasted feed; thus, they are important in formulating commercial feed. Dietary lipids play important roles in providing energy and essential fatty acid for normal growth and survival of fish. Although carbohydrates are not essential nutrients for carnivorous fish, these compounds play important roles as a low-cost energy source for protein sparing and also as a feed binder. Nutrition researches for flounder have identified its requirements of protein, lipid and essential fatty acid, vitamin, and minerals for normal growth. Other studies have also been carried out to investigate the utilization of the protein, lipid and carbohydrate sources. Based on these nutritional information obtained, practical feed formulations have been studied for improve aquaculture production of flounder. The results of the researches on utilization of dietary protein, lipid and carbohydrate by flounder are discussed in this review.

  • PDF

Sinapic Acid Ameliorates REV-ERB α Modulated Mitochondrial Fission against MPTP-Induced Parkinson's Disease Model

  • Lee, Sang-Bin;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.409-417
    • /
    • 2022
  • Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and accumulating evidence indicates that mitochondrial dysfunction is associated with progressive deterioration in PD patients. Previous studies have shown that sinapic acid has a neuroprotective effect, but its mechanisms of action remain unclear. The neuroprotective effect of sinapic acid was assayed in a PD mouse model generated by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as in SH-SY5Y cells. Target protein expression was detected by western blotting. Sinapic acid treatment attenuated the behavioral defects and loss of dopaminergic neurons in the PD models. Sinapic acid also improved mitochondrial function in the PD models. MPTP treatment increased the abundance of mitochondrial fission proteins such as dynamin-related protein 1 (Drp1) and phospho-Drp1 Ser616. In addition, MPTP decreased the expression of the REV-ERB α protein. These changes were attenuated by sinapic acid treatment. We used the pharmacological REV-ERB α inhibitor SR8278 to confirmation of protective effect of sinapic acid. Treatment of SR8278 with sinapic acid reversed the protein expression of phospho-Drp1 Ser616 and REV-ERB α on MPTP-treated mice. Our findings demonstrated that sinapic acid protects against MPTP-induced PD and these effects might be related to the inhibiting abnormal mitochondrial fission through REV-ERB α.

Composition, Structure, and Bioactive Components in Milk Fat Globule Membrane

  • Ahn, Yu-Jin;Ganesan, Palanivel;Kwak, Hae-Soo
    • 한국축산식품학회지
    • /
    • 제31권1호
    • /
    • pp.1-8
    • /
    • 2011
  • A unique biophysical membrane which surrounds the milk fat globules is called the milk fat globule membrane (MFGM). Various researches were studied about origin, composition, structure and bioactive components of MFGM. Bioactive protein components of MFGM play an important beneficiary function such as defense mechanism in new born. Among the bioactive lipid components from MFGM phospholipids showed health enhancing functions. The phospholipids also help in the production of certain dairy product from deterioration. MFGM phospholipids also showed antioxidant activity in some dairy products such as butter and ghee produced from milk of buffalo. Based on the beneficial effects, researchers developed MFGM as functional ingredients in various food products. This current review focuses on health enhancing function of MFGM and its components in various dairy products.

Oxidative Modification of Cytochrome c by Tetrahydropapaveroline, an Isoquinoline-Derived Neurotoxin

  • Kang, Jung Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.406-410
    • /
    • 2013
  • Tetrahyropapaveroline (THP) is compound derived from dopamine metabolism and is capable of causing dopaminergic neurodegenerative disorder, such as Parkinson's disease (PD). The aim of this study was to evaluate the potential of THP to cause oxidative damage on the structure of cytochrome c (cyt c). Our data showed that THP led to protein aggregation and the formation of carbonyl compound in protein aggregates. THP also induced the release of iron from cyt c. Reactive oxygen species (ROS) scavengers and iron specific chelator inhibited the THP-mediated cyt c modification and carbonyl compound formation. The results of this study show that ROS may play a critical role in THP-induced cyt c modification and iron releasing of cyt c. When cyt c that has been exposed to THP was subsequently analyzed by amino acid analysis, lysine, histidine and methionine residues were particularly sensitive. It is suggested that oxidative damage of cyt c by THP might induce the increase of iron content in cells and subsequently led to the deleterious condition. This mechanism is associated with the deterioration of organs under neurodegenerative disorder such as PD.

Application of Edible Insects as Novel Protein Sources and Strategies for Improving Their Processing

  • Kim, Tae-Kyung;Cha, Ji Yoon;Yong, Hae In;Jang, Hae Won;Jung, Samooel;Choi, Yun-Sang
    • 한국축산식품학회지
    • /
    • 제42권3호
    • /
    • pp.372-388
    • /
    • 2022
  • Insects have long been consumed by humans as a supplemental protein source, and interest in entomophagy has rapidly increased in recent years as a potential sustainable resource in the face of environmental challenges and global food shortages. However, food neophobia inhibits the widespread consumption of edible insects, despite their high nutritional and functional value. The own characteristics of edible insect protein such as foaming properties, emulsifying properties, gelling properties and essential amino acid ratio can be improved by drying, defatting, and extraction. Although nutritional value of some protein-enriched bread, pasta, and meat products, especially essential amino acid components was increased, replacement of conventional food with edible insects as a novel food source has been hindered owing to the poor cross-linking properties of edible insect protein. This deterioration in physicochemical properties may further limit the applicability of edible insects as food. Therefore, strategies must be developed to improve the quality of edible insect enriched food with physical, chemical, and biological methods. It was presented that an overview of the recent advancements in these approaches and highlight the challenges and prospects for this field. Applying these strategies to develop insect food in a more familiar form can help to make insect-enriched foods more appealing to consumers, facilitating their widespread consumption as a sustainable and nutritious protein source.

Storage characteristics of organic chicken stock containing plum extract and green tea powder

  • Na Young Choi;Sang Hoon Park;Gyu Tae Park;Yoon Hwan Park;Se Hyuk Oh;Yun A Kim;Tae Yeon Moon;Yang Il Choi;Jung Seok Choi
    • 농업과학연구
    • /
    • 제49권4호
    • /
    • pp.1003-1014
    • /
    • 2022
  • This study investigated quality characteristics of chicken stock with added plum extract (PE) and green tea powder (GP) stock during storage. Plum extract (0, 0.5, 1, 3%) and green tea powder (0, 0.5, 1, 3%) were added at three levels. Chicken stock was stored at room temperature for 14 days. The pH of the chicken stock decreased significantly as the content of PE and GP increased (p < 0.05). The group with 3% plum extract added showed significantly lower pH values (p < 0.05). Total numbers of microorganisms (TMC) showed significant differences according to the storage period (p < 0.05), where the groups with PE and GP added showed lower TMC values than the control group, This indicates that PE and GP could inhibit the growth of microorganisms. The addition of 3% PE or GP decreased lipid oxidation (TBARS) and protein deterioration (VBN) values. In sensory test, the results showed that adding PE or GP has a positive effect on storage characteristics of chicken stock. The addition of PE rather than GP is effective not only in improving sensory evaluation, but also in minimizing changes in quality by suppressing lipid oxidation and protein deterioration during storage. In conclusion, 3% PE addition was found to be the most optimal supplementation choice for increasing the storability of chicken stock.

황기 종자의 천연 항진균성 단백질의 분리정제 및 특성검정 (Purification and Characterization of Natural Antifungal Protein from Astragal Seeds (Astragalus membranaceus L.).)

  • 구본성;류진창;정태영;김교창
    • 한국미생물·생명공학회지
    • /
    • 제26권5호
    • /
    • pp.379-386
    • /
    • 1998
  • 본 연구에서는 천연 항균물질의 개발 이용을 위해 황기 종자로부터 인체에 무해한 천연 항균 단백질을 ion exchange chromatography 및 gel filteration을 이용하여, 순수 분리하고 특성을 조사하였다. 황기종자로부터 추출한 천연 항균 단백질은 Aspergillus ocraceus, Penicillium expensum, P. digitatum, Botrytis cineria의 포자 발아 및 효모인 Candida albicans의 생육을 현저하게 저해하였으며 ammonium sulfate 포화도가 0.4일 때 단백질의 침전량이 122.6 $\mu\textrm{g}$/$m\ell$로 가장 많았고 항균력도 15.2 mm로 가장 높게 나타났다. 강력한 cation exchange chromatography인 Mono-S를 이용하여 FPLC에서 단백질을 분획하였을때 첫번째 peak에서 분획된 단백질군이 항균력을 보였으며 Superose 12HR gel filteration column을 이용하여 2차 분획 하였을 때 분자량이 19 kDa되는 단일 단백질만을 순수분리 할 수 있었다. 전기 영동한 polyacrylamide gel위에 곰팡이 포자를 중층하는 bio autography로 19 kDa 단백질 band의 항균력을 직접 확인하였으며 분리된 항균 단백질의 아미노 말단의 아미 노산 22잔기를 sequencing하고 thaumatin 및 zeamatin 유사 단백질들과 상동성을 측정한 결과 50%내외의 homology를 나타내었다. 분리된 항균 단백질은 곰팡이 균사가 성장하는 선단부위에 가장 먼저 침투하여 channel을 형성함으로 osmolysis를 일으켜 곰팡이의 생육을 억제하는 것으로 추측할 수 있었다.

  • PDF

The design for therapeutic agents of Leucine Rich Repeat protein using bioinformatics

  • Kim, Seong Yeol;Park, Beom Seok
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.156-162
    • /
    • 2019
  • Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by progressive joint deterioration; Furthermore, RA can also affect body tissues, including the skin, eyes, lungs, heart and blood vessels. The early stages of RA can be difficult to diagnose because the signs and symptoms mimic those of many other diseases. It is not known exactly what triggers the onset of RA and how to cure the disease. But recent discoveries indicate that remission of symptoms is more likely when treatment begins early with strong medications known as disease-modifying anti-rheumatic drugs (DMARDs). Tumor necrosis factor (TNF) inhibitors are typical examples of biotherapies that have been developed for RA. The substances may occur naturally in the body or may be made in the laboratory. Other biological therapies care biological response modifiers (BRMs)such as monoclonal antibodies, interferon, interleukin-2 (IL-2) and a protein binder using repeat units. These substances play significant anti-inflammatory roles. Proteins with recurrent, conserved amino acid stretches mediate interactions among proteins for essential biological functions; for example, ankyrin (ANK), Heat repeat protein (HEAT), armadillo repeat protein (ARM) and tetratricopeptide repeats (TPR). Here, we describe Leucine rich repeats (LRR) that ideally fold together to form a solenoid protein domain and is more applicable to our current study than the previously mentioned examples. Although BRMs have limitations in terms of immunogenicity and effector functions, among other factors, in the context therapeutic use and for proteomics research, We has become clear that repeat-unit-derived binding proteins will increasingly be used in biotechnology and medicine.

Effect of Variable Feed Allowance with Constant Protein Input on Water Quality in Channel Catfish Production Ponds

  • Cho Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • 제1권2호
    • /
    • pp.192-200
    • /
    • 1998
  • This study was carried out to evaluate the effect of feeding higher protein feeds with lesser amount, but feeding the constant total protein input for all treatments, on water quality and nitrite toxicity in channel catfish ponds. There was no significant difference in survival rate among treatments $(P>0.05)$. Specific growth rate (SGR) for Treatment 1$(28\%\;protein\;and\;100\%\;of\;satiation)$ was significantly higher $(P>0.05)$ than for Treatment 3$(36\%\;protein\;and\;87.5\%\;of\;satiation)$, but not significantly higher than for Treatment 2 $(32\%\;protein\;and\;77.8\%\;of\;satiation)$ at constant digestible energy (DE), 3.08kcal/g (treatments 1, 2 and 3). At constant DE/P (treatments 4, 2 and 5), no significant difference in SGR was observed among treatments. Feed conversion ratio (FCR) slightly improved or improved as dietary protein level increased from $28\%$ to $32\%$ and feed allowance decreased by $12.5\%$, but did not improve as dietary protein level increased from $32\%$ to $36\%$ and feed allowance decreased by $22.2\%$, at constant DE and constant DE/P. There was no significant difference in water quality variables, such as total ammonia nitrogen (TAN), nitrite, chlorophyll a, soluble phosphorous concentrations among treatments, but significant difference in water quality variables over time as amount of feed fed increased $(P<0.0001)$. There was a trend toward increase in TAN and nitrite over time. A strong linear regression was observed between mean total ammonia nitrogen and nitrite for all treatments Y (Nitrite) =$0.04\times (TAN)+0.01$, $R_2=0.89$. Methemoglobin percent in the blood of catifish was not significantly different among treatments. And its mean value was $7.5\%$, which was relatively low, so that it was not serious problem in catfish production pond under these experiment conditions. There was the stronger linear regression between the percentage of Methemoglobin and the molar ratio of nitrite to chloride rather than nitrite alone: $Y\;(Methemoglobin\;\%)\;=\;58.45\;\times\;(NO^{2-}/Cl^-)\;+\;0.41,\;R^2=0.60$. These results indicate that deterioration of water quality has no strong impact on poor weight gain for $36\%$ dietary protein in this study.

  • PDF

Oxidative modification of ferritin induced by methylglyoxal

  • An, Sung-Ho;Lee, Myeong-Seon;Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.147-152
    • /
    • 2012
  • Methylglyoxal (MG) was identified as an intermediate in non-enzymatic glycation and increased levels were reported in patients with diabetes. In this study, we evaluated the effects of MG on the modification of ferritin. When ferritin was incubated with MG, covalent crosslinking of the protein increased in a time- and MG dose-dependent manner. Reactive oxygen species (ROS) scavengers, $N-acetyl-_L-cysteine$ and thiourea suppressed the MG-mediated ferritin modification. The formation of dityrosine was observed in MG-mediated ferritin aggregates and ROS scavengers inhibited the formation of dityrosine. During the reaction between ferritin and MG, the generation of ROS was increased as a function of incubation time. These results suggest that ROS may play a role in the modification of ferritin by MG. The reaction between ferritin and MG led to the release of iron ions from the protein. Ferritin exposure to MG resulted in a loss of arginine, histidine and lysine residues. It was assumed that oxidative damage to ferritin caused by MG may induce an increase in the iron content in cells, which is deleterious to cells. This mechanism, in part, may provide an explanation or the deterioration of organs under diabetic conditions.