• Title/Summary/Keyword: protein concentrate

Search Result 509, Processing Time 0.032 seconds

Determining the Optimal Level of Natural Calcium Powders and Whey Protein Concentrate Blends as Phosphate Replacers in Cooked Ground Pork Products

  • Jeong, Jong Youn
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1246-1252
    • /
    • 2018
  • This study was conducted to investigate the effects of the addition levels of a phosphate replacer blend in ground pork sausages. The phosphate replacer consisted of 0.2% oyster shell calcium powder, 0.3% egg shell calcium powder, and 0.25% whey protein concentrate. Depending on the presence or absence of synthetic phosphate and the addition level of phosphate replacer, the following products were processed: control (+) (0.3% phosphate), control (-) (non-phosphate), 20AL (20% replacer), 40AL (40% replacer), 60AL (60% replacer), 80AL (80% replacer), and 100AL (100% replacer). The pH values of pork sausages increased (p<0.05) with increasing addition level of the phosphate replacer. When more than 40% of the phosphate replacer was added to pork samples (40AL, 60AL, 80AL, and 100AL), cooking loss was significantly reduced compared to both the control (+) and control (-). However, no significant differences were observed in the moisture content and CIE $L^*$ values between the controls and the treatments with a phosphate replacer. The control (+) and 100AL treatment had the highest (p<0.05) hardness, but the samples with the phosphate replacer were not significantly different in cohesiveness and springiness from the control (+). As addition level increased, the gumminess and chewiness of the products with the phosphate replacer increased, which were lower than those of the control (+). Therefore, more than 40% of a phosphate replacer may possibly substitute synthetic phosphate to improve product yields in ground pork sausages, although further studies may be needed for improving the textural properties of the final products.

Quality Characteristics of Butter Sponge Cakes Added with Whey Protein Concentrate (WPC) (농축유청단백질 첨가 버터 스폰지케이크의 품질특성)

  • DaEun Choi;KyungHee Kim;EunRaye Jeon
    • Human Ecology Research
    • /
    • v.62 no.1
    • /
    • pp.59-68
    • /
    • 2024
  • This study investigated the quality characteristics of butter sponge cakes added with whey protein concentrate (WPC)(0%, 10%, 30%, 50%, 100%) added as a fat substitute. The density of the dough of butter sponge cakes significantly increased with higher levels of added WPC and the pH decreased (F=248.38, p<.001). The moisture content also decreased significantly (F=3.151, p < .05). However, the volume (F=9.556, p<.01) and specific volume (F=11.15, p<.001) significantly increased. With respect to color, there was no significant difference in the lightness (L) value of the crumb, but the redness (a) value increased significantly with higher levels of added WPC (F=12.616, p < .001), while the yellowness (b) value decreased significantly (F=4.550, p<.01). Regarding the crust, the L values (F=3.791, p<.01) and b values (F=7.000, p<.001) decreased significantly with higher levels of added WPC, while the (a) values increased significantly (F=4.706, p<.01). The DPPH radical scavenging ability of the raw WPC used in the manufacture of butter sponge cakes was found to be 27.45%, but this increased significantly as the amount of WPC added to butter sponge cakes increased (F=45.237, p<.001). In a consumer preference test, the flavor, appearance, texture, odor, and overall acceptability were highest in the case of WPC-10 when taking advantage of the functional advantages of WPC as a lowfat substitute, confirming the development potential and optimal amount of WPC that should be added to butter sponge cakes.

FRESH CASSAVA AS A FEED FOR FATTENING PIGS

  • Ochetim, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.361-365
    • /
    • 1993
  • An experiment was conducted to investigate the effects of feeding fresh cassava roots on the performance and carcass quality of pigs raised from $15{\pm}1kg$ to 85 kg live weight. Fresh unpeeled cassava roots were chopped into chips and offered separately along with a protein concentrate made up of copra cake and meat and bone meal, and a local mineral-vitamin premix. Commercial pig grower and finisher diets served as control. A total of 24 pigs were used in an incomplete randomized split-plot design experiment. Pigs fed fresh cassava-based diet grew as fast, 0.78 vs 0.77 kg/day, and were as efficient, 3.74 vs 3.77 in converting feed into body weight gain as those fed the commercial control diet. Similarly, there were no differences in carcass quality measured in terms of dressing percentage, 77 vs 77; backfat thickness, 2.76 vs 2.78 cm; loin eye muscle area, 29.2 vs $29.1cm^2$ and in the relative proportions of the different carcass cuts between the two dietary treatments. The use of fresh cassava along with the protein and the local mineral-vitamin premix however, resulted in lowered total feed cost and cost per unit of live weight gain. It is concluded that fresh cassava roots can be fed along with copra cake, meat and bone meal protein concentrate and a local mineral-vitamin premix to fattening pigs with no adverse affects on performance and carcass quality.

PROCESSING OF LIQUEFIED SARDINE PROTEIN CONCENTRATE BY ENZYMIC METHOD AND ITS UTILIZATION (산소를 이용한 정어리 액화단백질 농축물의 제조 및 이용에 관한 연구)

  • KIM Chang-Yang;HAN Bong-Ho;LEE Keun-Tai;CHO Duck-Jae;KIM Se-Kweun;KIM Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.143-153
    • /
    • 1979
  • A study on tile processing of liquefied fish protein with a long self life and good solubility has been carried out for the effective utilization of sardine. The whole sadine was chopped, homogenized with same amount of water and then hydrolyzed by the addition of commercial proteolytic enzyme. The hydrolysate was centrifuged and the supernatant was decolorized with active carbon, desodorized by azeotropic distillation with toluene, xylene and cyclohexane. The liquefied sardine protein was then concentrated by rotary vacuum evaporator with the addition of starch. The use of $0.2\%$ commercial proteolytic enzyme to the weight of the whole sardine showed the optimum hydrolysis ratio at $55^{\circ}C$ for 4 hours. The liquefied sardine protein could be decolorized and also desodorized by the treatment with $15\%$ active carl]on at room temperature for 30 minuted. In the view point of lipid concentration and the solubility of the product, the liquefied sardine protein prepared by enzymic hydrolysis from the sardine protein concentrate was better than that prepared by enzymic hydrolysis from the whole sardine and sardine protein concentrate.

  • PDF

Effect of Carbohydrate Source and Cottonseed Meal Level in the Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Swamp Buffaloes

  • Wanapat, Metha;Pilajun, R.;Polyorach, S.;Cherdthong, A.;Khejornsart, P.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.7
    • /
    • pp.952-960
    • /
    • 2013
  • The objective of this study was to investigate the effect of carbohydrate source and cottonseed meal level in the concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in swamp buffaloes. Four, 4-yr old rumen fistulated swamp buffaloes were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and CC+rice bran at a ratio 3:1 (CR3:1), and factor B was level of cottonseed meal (CM); 109 g CP/kg (LCM) and 328 g CP/kg (HCM) in isonitrogenous diets (490 g CP/kg). Buffaloes received urea-treated rice straw ad libitum and supplemented with 5 g concentrate/kg BW. It was found that carbohydrate source did not affect feed intake, nutrient intake, digested nutrients, nutrient digestibility, ammonia nitrogen concentration, fungi and bacterial populations, or microbial protein synthesis (p>0.05). Ruminal pH at 6 h after feeding and the population of protozoa at 4 h after feeding were higher when buffalo were fed with CC than in the CR3:1 treatment (p<0.05). Buffalo fed with HCM had a lower roughage intake, nutrient intake, population of total viable and cellulolytic bacteria and microbial nitrogen supply than the LCM fed group (p<0.05). However, nutrient digestibility, ruminal pH, ammonia concentration, population of protozoa and fungi, and efficiency of microbial protein synthesis were not affected by cottonseed meal levels (p>0.05). Based on this experiment, concentrate with a low level of cottonseed meal could be fed with cassava chips as an energy source in swamp buffalo receiving rice straw.

Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls

  • Wanapat, Metha;Anantasook, N.;Rowlinson, P.;Pilajun, R.;Gunun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.529-536
    • /
    • 2013
  • The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and cassava chip+rice bran in the ratio of 3:1 (CR3:1), and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.

Studies on the Improvements of Functional Properties of Sardine Protein by Plastein Reaction -1. Synthetic Conditions of Plasteins from the Enzymatic Hydrolysate of Sardine Protein- (Plastein반응을 이용한 정어리 단백질의 기능성 개선에 관한 연구 -1. 정어리 분말단백질의 pepsin가수분해물을 이용한 plastein의 합성조건-)

  • Kim, Se-Kwon;Kwak, Dong-Chae;Cho, Duck-Jae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.3
    • /
    • pp.233-241
    • /
    • 1988
  • In order to develop a new type of food source for the effective utilization of fish protein, plastein reaction was applied to improve the functional properties of sardine protein. Conditions necessary for optimal plastein productivity from sardine protein using pepsin, ${\alpha}-chymotrypsin$, protease(from Aspergillus saitoi) and papain were established. Sardine protein concentrate was hydrolyzed with pepsin yielding an approximate degree of hydrolysis of 78.4%. Enzyme induced plastein was optimized at : pH 4 for pepsin, pH 7 for ${\alpha}-chymotrypsin$, pH 5 for pretense and pH 6 for papain : Substrate concentrate 40% for pepsin and ${\alpha}-chymotrypsin$, 50% for pretense and papain : the time of incubation, 24hr : enzyme/substrate ratio, 1 : 100(w/v) incubation temperature, $50^{\circ}C$.

  • PDF

Study on the Preparation and Utilization of Sardine Protein (정어리 단백질 제조와 이용에 관한 연구)

  • 이경하;차월석;김종수
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.426-429
    • /
    • 2001
  • To utilize sardine protein more effectively, fish meat paste products mixing sardine protein concentrate with pollack frozen meat paste at the ratio 0%, 15%, 20% and 25% were produced, and the change of firmness, sensory evaluation and the properties of amino and fatty acid were investigated. The quantity of sardine protein and it was almost gushed out around one hour at 100$\^{C}$. The firmness of the meat paste product was found as 0.54% and was better when the concentrated sardine protein was added at the ratio 15% and it was much higher than just that of pollack meat paste. In that case, total amino acid was the highest as 90.701 mg/g from the point of view of the amino acid composition. In terms of the fatty acid composition, unsaturated fatty acid of raw and boiled sardine was 61,8634% and 61.9384% each. We could find out that the high value of C$\_$20:5/ and C$\_$22:6/ of raw sardine was 7.2931% and 27.7843%, respectively.

  • PDF

Fish Meal Replacement with a Mixture of Plant and Animal Protein Sources in Extruded Pellet (EP) Diet for Red Seabream Pagrus major at Low Water Temperature (저수온기 참돔(Pagrus major) EP사료 내 동·식물성단백질 혼합물의 어분 대체)

  • Lim, Jongho;Kim, Min-Gi;Lim, Hyunwoon;Lee, Bong-Joo;Lee, Seunghyung;Hur, Sang-Woo;Kim, Kang-Woong;Lee, Kyeong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.350-357
    • /
    • 2021
  • This study aimed to evaluate how fish meal (FM) replacement in diets with a mixture of animal and plant protein sources affect growth performance, feed utilization, hematological parameters and innate immunity of red seabream Pagrus major. A control FM diet was formulated to contain 65% FM (Con). Two other diets were prepared replacing FM in the control diet with a mixture of protein sources (wheat gluten, soy-protein concentrate, tankage meal, and poultry by-product meal) by 30 and 40% (FM30 and FM40, respectively). Total 300 red seabream (body weight, 77.6±0.3g) were distributed to 12 tanks (300 L) in 4 replicates per diet. The fish were fed the diets to apparent satiation for 19 weeks. After the feeding trial, no significant differences could be observed in growth performance, feed utilization, hematological parameters, innate immunity, and survivals among all the dietary treatments. This long-term feeding trial at low water temperature (13.8-17.5℃) indicates that a proper mixture ratio of wheat gluten, soy protein concentrate, tankage meal, and poultry by-product meal can replace FM up to 40% in red seabream diets.

Apparent digestibility coefficients of plant feed ingredients for olive flounder (Paralichthys olivaceus)

  • Mostafizur Rahman;Buddhi E. Gunathilaka;Sang-Guan You;Kang-Woong Kim;Sang-Min Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2023
  • This study was designed to determine the apparent digestibility coefficients of soybean meal, soy protein concentrate (SPC), soy protein isolate (SPI), rapeseed meal (RSM), pea protein concentrate (PPC), wheat gluten meal (WGM) and wheat flour (WF) for olive flounder, Paralichthys olivaceus. A reference diet (RF) was formulated to meet the nutrient requirements of olive flounder with 1% chromic oxide (Cr2O3) as an inert indicator. Test diets were prepared to contain 70% RF and 30% of the test ingredient. Olive flounder, averaging 150 ± 8.0 g, was cultured in 400-L fiberglass tanks at a density of 25 fish per tank. Fecal collection columns were attached to each tank. Fecal samples were obtained from triplicate groups of fish for 4 weeks. Dry matter digestibility of SPC (75%) and WGM (76%) were significantly higher than the other test ingredients. Protein digestibility of SPC (85%), PPC (88%) and WGM (89%) were significantly higher than the other test ingredients, and protein digestibility of RSM (77%) and WF (76%) was lower than the other ingredients tested. Lipid digestibility of SPC (72%) and SPI (69%) were significantly higher than the other test ingredients. Energy digestibility of SPC (85%) and WGM (82%) were significantly higher than that of others tested ingredients. The availability of amino acids in WGM was generally higher than in other plant-feed ingredients. Therefore, SPC and WGM were seems to be efficient as potential protein sources for olive flounder compared to other tested ingredients. Overall, findings of the current study may assist in more efficient and economical formulation of diets using plant feed ingredients for olive flounder.