Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12607

Effect of Carbohydrate Sources and Levels of Cotton Seed Meal in Concentrate on Feed Intake, Nutrient Digestibility, Rumen Fermentation and Microbial Protein Synthesis in Young Dairy Bulls  

Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Anantasook, N. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Rowlinson, P. (School of Agriculture, Food and Rural Development Agriculture Building, Newcastle University)
Pilajun, R. (Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University)
Gunun, P. (Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.4, 2013 , pp. 529-536 More about this Journal
Abstract
The objective of this study was to investigate the effect of levels of cottonseed meal with various carbohydrate sources in concentrate on feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in dairy bulls. Four, 6 months old dairy bulls were randomly assigned to receive four dietary treatments according to a $2{\times}2$ factorial arrangement in a $4{\times}4$ Latin square design. Factor A was carbohydrate source; cassava chip (CC) and cassava chip+rice bran in the ratio of 3:1 (CR3:1), and factor B was cotton seed meal levels in the concentrate; 109 g CP/kg (LCM) and 328 g CP/kg (HCM) at similar overall CP levels (490 g CP/kg). Bulls received urea-lime treated rice straw ad libitum and were supplemented with 10 g of concentrate/kg BW. It was found that carbohydrate source and level of cotton seed meal did not have significant effects on ruminal pH, ammonia nitrogen concentration, microbial protein synthesis or feed intake. Animals which received CC showed significantly higher BUN concentration, ruminal propionic acid and butyric acid proportions, while dry matter, organic matter digestibility, populations of total viable bacteria and proteolytic bacteria were lower than those in the CR3:1 treatment. The concentration of total volatile fatty acids was higher in HCM than LCM treatments, while the concentration of butyric acid was higher in LCM than HCM treatments. The population of proteolytic bacteria with the LCM treatments was higher than the HCM treatments; however other bacteria groups were similar among the different levels of cotton seed meal. Bulls which received LCM had higher protein digestibility than those receiving HCM. Therefore, using high levels of cassava chip and cotton seed meal might positively impact on energy and nitrogen balance for the microbial population in the rumen of the young dairy bull.
Keywords
Carbohydrate Source; Cotton Seed Meal; Rumen Fermentation; Microbial Population; Young Dairy Bull;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Aldrich, J. M., L. D. Muller, G. A. Varga and L. C. Jr. Griel. 1993. Non structural carbohydrate and protein effects on rumen fermentation, nutrient flow, and performance of dairy cows. J. Dairy Sci. 76:1091-1105.   DOI   ScienceOn
2 AOAC. 1991. Official methods of analysis. Association of Official Analysis Chemists, DC, USA. p. 1230.
3 AOAC. 1995. Official method of analysis, 16th ed. Animal Feeds: Association of Official Analytical Chemists, Virginia, USA, pp. 1-18.
4 Etman, K. E. I., I. M. Soliman, I. A. S. Abou-Selim and A. A. Soliman. 1993. Cassava (Manihot esculenta, crantz.) in rations of buffaloes: E. Effect of partial replacement of yellow corn by cassava pellets in rations of growing buffaloes calves. In: Prospects of buffaloes production in the Mediterranean and the middle east (Ed. M. Shafie, A. H. Barkawi, S. A. Ibrahim and R. R. Sadek). Cairo, Egypt. Pudoc Scientific Publishers, Wageningen. pp. 302-304.
5 Galyean, M. 1989. Laboratory procedure in animal nutrition research. Department of Animal and Life Science. New Mexico State University, USA. p. 193.
6 Granum, G., M. Wanapat, P. Pakdee, C. Wachirapakorn and W. Toburan. 2007. A comparative study on the effect of cassava hay supplementation in swamp buffaloes (Bubalus bubalis) and cattle (Bos indicus). Asian-Aust. J. Anim. Sci. 20:1389-1396.   과학기술학회마을   DOI
7 Firkins, J. L. 1996. Maximizing microbial protein synthesis in the rumen. J. Nutr. 126:1347S-1354S.
8 Firkins, J. L., A. N. Hristov, M. B. Hall, G. A. Varga and N. R. St-Pierre. 2006. Integration of ruminal metabolism in dairy cattle. J. Dairy Sci. 89:E31-E51.   DOI   ScienceOn
9 Foiklang, S. and M. Wanapat, 2010. Effect of carbohydrate sources and hi-pro feed on rumen fermentation and nutrient digestibility in beef cattle. Proceeding of the 11st Animal Science Agriculture Seminar, Department of Animal Science, Khon Kaen University.
10 Hungate, R. E. 1966. The rumen and its microbes. Academic Press. New York and London. p. 533.
11 Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology, edited by Norris (Ed. J. R. Norris and D. W. Ribbons), New York. Academic. p. 313-117.
12 Keady, T. W. J. and C. S. Mayne. 2001. The effects of concentrate energy source on feed intake and rumen fermentation parameters of dairy cows offered a range of grass silage. Anim. Feed Sci. Technol. 90:117-129.   DOI   ScienceOn
13 Wang, Y. H., M. Xua, F. N. Wang, Z. P. Yu, J. H. Yao, L. S. Zan and F. X. Yang. 2009. Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livest. Sci. 122:48-52.   DOI   ScienceOn
14 Wanapat, M., R. Pilajun and P. Kongmun. 2009a. Ruminal ecology of swamp buffalo as influenced by dietary sources. Anim. Feed Sci. Technol. 151:205-214.   DOI   ScienceOn
15 Wanapat, M., R. Pilajun and P. Rowlinson. 2012. Effect of carbohydrate source and cottonseed meal level in the concentrate: IV. Feed intake, rumen fermentation and milk production in milking cows. Trop. Anim. Health Prod. 45:447-453.
16 Wanapat, M., S. Polyorach, K. Boonnop, C. Mapato and A. Cherdthong. 2009b. Effects of treating rice straw with urea or urea and calcium hydroxide upon intake, digestibility, rumen fermentation and milk yield of dairy cows. Livest. Sci. 125:238-243.   DOI   ScienceOn
17 Wora-Anu, S., M. Wanapat, C. Wachirapakorn and N. Nontaso. 2007. Effect of roughage sources on cellulolytic bacteria and rumen ecology of beef cattle. Asian-Aust. J. Anim. Sci. 20:1705-1712.   과학기술학회마을   DOI
18 Baldwin, R. L. VI., K. R. McLeod, J. L. Klotz and R. N. Heitmann. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre- and post-weaning ruminant. J. Dairy Sci. 87:E55-E65.   DOI   ScienceOn
19 Bach, A., S. Calsamiglia and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21.   DOI   ScienceOn
20 Baldwin, R. L. VI. 1998. Use of isolated ruminal epithelial cells in the study of rumen metabolism. J. Nutr. 128:293S-296S.
21 Bannink, A., J. Kogut, J. Dijkstra, J. France, E. Kebreab, A. M. Van Vuuren and S. Tamming. 2006. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol. 238:36-51.   DOI   ScienceOn
22 Bremmer, J. M. and D. R. Keeney. 1965. Steam distillation methods to determination of ammonium, nitrate and nitrite. Anal. Chim. Acta. 32:485-495.   DOI   ScienceOn
23 Bruckental, I., S. M. Abramson, S. M. Zamwel, G. Adin and A. Ariel. 2002. Effect of dietary undegradable crude protein level on total nonstructural carbohydrate (TNC) digestibility and milk yield and composition of dairy cows. Livest. Prod. Sci. 76:71-79.   DOI   ScienceOn
24 Caton, J. S., W. C. Hoefler, M. L. Galyean and M. A. Funk. 1988. Influence of cottonseed meal supplementation and cecal antibiotic infusion in lambs fed low-quality forage. I. Intake, digestibility, nitrogen balance and ruminal and cecal digesta kinetics. J. Anim. Sci. 66:2253-2261.
25 Chanjula, P., M. Wanapat, C. Wachirapakorn and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410.   과학기술학회마을   DOI
26 Margarida, M., B. Chhorn, L. Phillip and H. Klesius. 2002. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture 207:263-279.   DOI   ScienceOn
27 Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006. Effects of urea level and sodium DL-malate in concentrate containing high cassava chip on ruminal fermentation efficiency, microbial protein synthesis in lactating dairy cows raised under tropical condition. Asian-Aust. J. Anim. Sci. 19:837-841.   과학기술학회마을   DOI
28 Khan, M. A., H. J. Lee, W. S. Lee, H. S. Kim, S. B. Kim, S. B. Park, K. S. Baek, J. K. Ha and Y. J. Choi. 2008. Starch source evaluation in calf starter: II. Ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in Holstein calves. J. Dairy Sci. 91:1140-1149.   DOI   ScienceOn
29 Lesmeister, K. E. and A. J. Heinrichs. 2004. Effects of corn processing on growth characteristics, rumen development and rumen parameters in neonatal dairy calves. J. Dairy Sci. 87:3439-3450.   DOI   ScienceOn
30 Owen, F. G., D. W. Kellogg and W. T. Howard. 1967. Effect of molasses in normal- and high-grain rations on utilization of nutrients for lactation. J. Dairy Sci. 50:1120-1125.   DOI
31 Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containing cassava chips and rice straw for lactating dairy cows. Asian-Aust. J. Anim. Sci. 18:502-511.   과학기술학회마을   DOI
32 Promkot, C., M. Wanapat, C. Wachirapakorn and C. Navanukraw. 2007. Influence of sulfur on fresh cassava foliage and cassava hay incubated in rumen fluid of beef cattle. Asian-Aust. J. Anim. Sci. 20:1424-1432.   과학기술학회마을   DOI
33 Samuel, M., S. Sagathewan, J. Thomas and G. Mathen. 1997. An HPLC method for estimation of volatile fatty acids of ruminal fluid. Indian J. Anim. Sci. 67:805-807.
34 Richardson, J. M., R. G. Wilkinson and L. A. Sinclair. 2003. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs. J. Anim. Sci. 81:1332-1347.
35 Rusche, W. C., R. C. Cochran, L. R. Corah, J. S. Stevenson, D. L. Harmon, R. T. Jr. Brandt. and J. E. Minton. 1993. Influence of source and amount of dietary protein on performance, blood metabolites, and reproductive function of primiparous beef cows. J. Anim. Sci. 71:557-563.
36 Russell, J. B. and J. L. Rychlik. 2001. Factors that alter rumen microbial ecology. Science 292:1119-1122.   DOI   ScienceOn
37 SAS. User's Guide: Statistic, Version 5. Edition. 1996. SAS. Inst Cary, NC., USA.
38 Sarwar, M., J. L. Firkins and M. Eastridge. 1991. Effect of replacing neutral detergent fiber of forage with soyhulls and corn gluten feed for dairy heifers. J. Dairy Sci. 74:1006-1017.   DOI
39 Singh, M., K. Sharma, N. Dutta, P. Singh, A. K. Verma and U. R. Mehra. 2007. Estimation of rumen microbial protein supply using urinary purine derivatives excretion in crossbred calves fed at different levels of feed intake. Asian-Aust. J. Anim. Sci. 20:1567-1574.   과학기술학회마을   DOI
40 Sommart, K., D. S. Parker, P. Rowlinson and M. Wanapat. 2000. Fermentation characteristics and microbial protein synthesis in an in vitro system using cassava, rice straw and dried ruzi grass as substrates. Asian-Aust. J. Anim. Sci. 13:1084-1093.   DOI
41 Sommart, K., M. Wanapat, P. Rowlinson and D. S. Parker. 1997. The effects of nonstructural carbohydrate and dietary protein on feed intake, ruminal fermentation and cow performance. In: Proceedings of the British Society of Animal Science, March 1997. British Society of Animal, Scarborough, England, UK. p. 97.
42 Clark, J. H., T. H. Klusmeyer and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323.   DOI   ScienceOn
43 Chantaprasarn, N. and M. Wanapat. 2008. Effects of sunflower oil supplementation in cassava hay based-diets for lactating dairy cows. Asian-Aust. J. Anim. Sci. 21:42-50.   과학기술학회마을   DOI
44 Chen, X. B. and M. J. Gomes. 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine perivatives -an overview of the technical details. Occasional Publication 1992. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
45 Chen, X. B., D. J. Kyle and E. R. Orskov. 1993. Measurement of allantoin in urine and plasma by high-performance liquid chromatography with pre-column derivatization. J. Chromathogr. 617:241-247.   DOI   ScienceOn
46 Clark, J. H., M. R. Murphy and B. A. Crooker. 1987. Supplying the protein needs of dairy cattle from by-product feeds. J. Dairy Sci. 70:1092-1109.   DOI
47 Corbtt, J. C. and T. N. Edey. 1977. Ovulation in ewes given formaldehyde-treated or untreated casein in maintenance-energy rations. Aust. J. Agric. Res. 28:491-500.   DOI
48 Dijkstra, J. 1994. Production and absorption of volatile fatty acids in the rumen. Livest. Prod. Sci. 39:61-69.   DOI   ScienceOn
49 Erfle, J. D., F. D. Sauer and S. Mahadevan. 1976. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 60:1064-1072.
50 Stern, M. D. and W. H. Hoover. 1979. Methods for determining and factors affecting rumen microbial protein synthesis: a review. J. Anim. Sci. 49:1590-1603.
51 Swartz, L. A., A. J. Heinrichs, G. A. Varga and L. D. Muller. 1991. Effects of varying dietary undegradable protein on dry matter intake, growth, and carcass composition of Holstein calves. J. Dairy Sci. 74:3884-3890.   DOI
52 Tajima, M., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-Time PCR. Appl. Environ. Microbiol. 67:2766-2774.   DOI   ScienceOn
53 Titi, H. H. 2003. Replacing soybean meal with sunflower meal with or without fibrolytic enzymes in fattening diets of goat kids. Small Rumin. Res. 48:45-50.   DOI   ScienceOn
54 Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods of dietary fiber, neutral detergent fiber and non-starch carbohydrates in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
55 Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472.   과학기술학회마을   DOI
56 Wanapat, M. and S. Khampa. 2007. Effect of levels of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial N supply and digestibility of nutrients in beef cattle. Asian-Aust. J. Anim. Sci. 20:75-81.   과학기술학회마을
57 Wanapat, M. and R. Pilajan. 2009. Effect of hi-pro feed and carbohydrate sources on rumen fermentation and milk production in dairy milking cows. Proceeding of the 10th Animal Science Agriculture Seminar, Department of Animal Science, Khon Kaen University.