• Title/Summary/Keyword: protein antigenicity

Search Result 99, Processing Time 0.028 seconds

Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis

  • Abu Saim Mohammad, Saikat
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.25.1-25.12
    • /
    • 2023
  • Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.

Antigenicity of Protein Entrapped in Poly(lactide-co-glycolide) Microspheres (폴리락티드-글리콜리드 마이크로스피어에 봉입된 단백질의 항원성 평가)

  • Song, Seh-Hyon;Cho, Seong-Wan;Shin, Taek-Hwan;Yoon, Mi-Kyoung;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.191-196
    • /
    • 2001
  • Biodegradable polymeric microspheres were studied for their usefulness as carriers for the delivery of vaccine antigens. However, protein antigen could be denatured during microencapsulation processes due to the exposure to the organic phase and stress condition of cavitation and shear force. Therefore this study was carried out to re-evaluate the degree of protein denaturation during microencapsulation with poly(lactide-co-glycolide) (PLGA) copolymer. PLGA microspheres containing ovalbumin (OVA), prepared by W/O/W multiple emulsification method, were suspended in pH 7.4 PBS and incubated with shaking at $37.5^{\circ}C$. Drug released medium was collected periodically and analyzed for protein contents by micro-BCA protein assay. In order to evaluate the protein integrity, release medium was subjected to the analyses of SDS-PAGE and size exclusion chromatography (SEC). And enzyme-linked immunosorbent assay (ELISA) was introduced to measure the immunoreactivity of entrapped OVA and to get an insight into the three-dimensional structure of epitope. The structures of entrapped protein were not affected significantly by the results of SDS-PAGE and SEC. However, immunoreactivity of released antigen was varied, revealing the possibility of protein denaturation in some microspheres when it was evaluate by ELISA method. Therefore, in order to express the degree of protein denaturation, antigenicity ratio (AR) was obtained as follows: amount of immunoreactivity of OVA/total amount of OVA released ${\times}100(%)$. ELISA method was an efficient tool to detect a protein denaturation during microencapsulation and the comparison of AR values resulted in more accurate evaluation for immunoreactivity of entrapped protein.

  • PDF

Antigenicity of Whey Protein Hydrolysates Against Rabbit Anti ${\alpha}-Lactalbumin$ Antiserum (토끼 항 ${\alpha}-Lactalbumin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Lee, Soo-Won;Lee, Jae-Young;Shon, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.436-441
    • /
    • 1994
  • To investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein isolate (WPI) against rabbit anti ${\alpha}-LA$ antiserum, competitive inhibition ELISA (cELISA) and passive cutaneous anaphylaxis (PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates (WPH) to the antiserum was decreased to $10^{-2.5}-10^{-5.5}$ and less by the hydrolysis. The monovalent antigenicity of the WPH hydrolyzed by trypsin, or protease from Asp. nryzae was much lowered by the pretreatment of heat denaturation. The antigenicity of the WPH hydrolyzed by chymotrypsin, trypsin, or pancreatin was much lowered by the pretreatment of pepsin. Especially, the antigenicity of TDP (trypic hydrolysate with pretreatment of heat and pepsin) was found almost to be removed. However, there was not consistency between degree of hydrolysis(DH) and the monovalent antigenicity of the WPH. By the heterologous PCA it was found that all of the PGPH lost the polyvalent antigenicity regardless of the pretreatments although WPI and ${\alpha}-LA$ had the positive high antigenicity. The results suggested that the peptides derived from ${\alpha}-LA$ in WPH could bind specific antibodies but they could not induce allergy. Therefore, it was elucidated that the allergenicity of ${\alpha}-LA$ in whey protein could be destroyed easily by the enzymatic hydrolysis.

  • PDF

The Localization of the Specific Antigenic Protein in the Tissue of Paragonimus westermani Metacercaria (폐흡충 피낭유충 조직에 있어서 특정항원성 단백질의 분포)

  • Kim, Soo-Jin;Roh, Tae-Hoon;Joo, Kyoung-Hwan;Rim, Han-Jong
    • Applied Microscopy
    • /
    • v.27 no.4
    • /
    • pp.403-416
    • /
    • 1997
  • In order to observe the localization of the specific antigenic protein in the tissue of Paragonimus westermani metacercaria, immunogoldlabeling method was applied using IgG of the dog which were infected with Paragonimus westermani metacercaria and IgG of rabbits which were immunized with purified 23 kDa protein from metacercaria of the Paragenimus westermani. The metacercaria worm tissues obtained from Cambaroides similis were embedded in Lowicryl HM20 medium, treated with infected and immunized IgG and protein A gold complex (particle size; 12 nm) and observed by electron microscope. In the tissue antigen of Paragonimus westermani metacercaria, the content of excretory bladder which was highly dense electron density was constituted in the excretory bladder of the parenchymal tissue. In the metacercaria tissues antigen reacted with IgG of infected dog. Labeled gold particles distributed on the interstitial matrix of parenchymal cells, fibrous granules of parenchymal tissue and the content of excretory bladder. High antigenicity was observed on content of excretory bladder. It was found to be specifically distributed at the tissue of Paragonimus westermani metacercaria. In the tissues antigen reacted with IgG of immunized rabbit. Labeled gold particles randomly distributed on the interstitial matrix and fibrous granules of parenchymal tissue but in the content of excretory bladder of Paragonimus westermani metacercaria, gold particles were richly labeled. Therefore, the 23 kDa protein contained with Paragonimus westermani metacercaria was found protein which was specifically constituted at the content of excretory bladder of Paragonimum westermani metacercaria. The 23 kDa protein was commonly contained from of Paragonimus westermani metacercaria to adult and showed strong antigenicity against the immunized and infected IgG.

  • PDF

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.

Antigenicity of Whey Protein Hydrolysates against Rabbit Anti ${\beta}-Lactoglobulin$ Antiserum (토끼 항 ${\beta}-Lactoglobulin$ 항혈청에 대한 유청단백질 가수분해물의 항원성)

  • Lee, Soo-Won;Ha, Woel-Kyu;Juhn, Suk-Lak;Kim, Jung-Wan;Shon, Dong-Hwa;Lee, Jae-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.532-538
    • /
    • 1994
  • In order to investigate the lowering effects of in vitro enzymatic hydrolysis by the treatment of chymotrypsin, trypsin, pancreatin, or protease from Aspergillus oryzae on the antigenicity of whey protein(WPI) against rabbit anti ${\beta}-LG$ antiserum, competitive inhibition ELISA(cELISA) and passive cutaneous anaphylaxis(PCA) test using guinea pig were performed. The results of cELISA showed that the monovalent antigenicity of the whey protein hydrolysates(WPH) to the antiserum was decreased to $10^{-1.7}{\sim}10^{-4.1}$ and less by the hydrolysis. Especially, the antigenicity of OUP(hydrolysate by protease from Asp. oryzae with preteatment of pepsin) was found almost to be removed. By the heterologous PCA the polyvalent antigenicity of the WPH was decreased to $1/2{\sim}1/128$ and less. Especially, the polyvalent antigenicity of OUN(hydrolysate by protease from Asp. oryzae without preteatments) was found almost to be removed, although OUN did not have so high degree of hydrolysis(DH) or so low monovalent antigenicity (reduced to $10^{-3.2}$). Therefore, this result was assumed to come from effective destruction of antigenic determinants on ${\beta}-LG$ in WPI, not to produce polyvalent antigenic peptides that are closely associated with induction of allergy. This finding suggested that WPH prepared by the treatment of microorganic protease from Asp. oryzae would be a material for hypoallergenic infant formula due to the removal of the polyvalent antigenicity of ${\beta}-LG$, the major milk allergen in WPI.

  • PDF

Reduction of Antigenicity of Bovine Casein by Microbial Enzymes (미생물효소에 의한 우유 casein의 항원성 저감화)

  • Choe, Hyeon-Seok;Ahn, Jong-Nam;Jeong, Seok-Geun;Ham, Jun-Sang;In, Yeong-Min;Kim, Dong-Un
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • It is extremely important to destroy the antigenicity of milk proteins for dietetic treatment of infants with milk allergy. Enzymatic digestion of milk protein is not only effective for destroying antigenicity, but it also is less liable to alter the nutritive value. Bovine casein was hydrolyzed with eight different commercial proteases derived from bacterias or fungi, either individually or in combination to eliminate protein allergenicity. The average molecular weight of casein hyrdolysates determined by size exclusion chromatography is about 550${\sim}$2,300 dalton range. Antigenicity of the casein hyrdolysates was not detected by heterologous passive cutaneous anaphylaxis in guinea pig-rabbit antiserum system. The inhibition test on the enzyme-linked immunosorbent assay(ELISA) showed that the antigenicity of casein hydrolysates is lowed up to 1/8,000 than that of intact bovine casein. As the enzyme reaction was carried out by the combination of bacterial and fungal protease, casein hydrolysates showed much lower bitterness and antigenicity. It suggests that these hydrolysates will be applied to many kinds of foods including the development of hypo-allergenic infant formula.

  • PDF

The 10 kDa protein of Taenia solium metacestodes shows genus specific antigenicity

  • Park, Seung-Kyu;Yun, Doo-Hee;Chung, Joon-Yong;Kong, Yoon;Cho, Seung-Yull
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.3
    • /
    • pp.191-194
    • /
    • 2000
  • Genus specific antigenicity of the 10 kDa protein in cyst fluid (CF) of Taenia solium metacestodes was demonstrated by comparative immunoblot analysis. When CFs from taeniid metacestodes of T. saginata, T. solium, T. taeniaeformis and T. crassiceps were probed with specific monoclonal antibody (mAb) raised against 150 kDa protein of T. solium metacestodes, specific antibody reactions were observed in 7 and 10 kDa proteins of T. solium and in 7/8 kDa of T. saginata, T. taeniaeformis and T. crasiceps. The mAb did not react with any protein in hydatid fluid of Echinococcus granulosus and E. multilocularis. This result revealed that the 10 kDa peptide of T. solium metacestodes and its equivalent proteins of different Taenia metacestodes are genus specific antigens that are shared among different Taenia species.

  • PDF

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

Conjugation of Protein and Peptide Drugs with Hydrophilic Polymers and Their Applications (수용성 고분자물질-단백질 접합체의 합성 및 응용)

  • Yong, Chul-Soon;Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.187-206
    • /
    • 1993
  • Since the advent of recombinant DNA technology coupled with other biotechnology a variety of therapeutically effective proteins and peptides have been extensively invesitigated and many of them are now on clinical trial. They, however, suffer from some problems such as immunogenicity, antigenicity, instability and short half-life in circulation due to their proteinous natures. These drawbacks can be overcome successfully by conjugating proteins and peptides with hydrophilic polymers such as polyethylene glycol (PEG), albumin or dextran. The resulting soluble conjugates showed reduced antigenicity and immunogenicity, increased circulatory half-life, enhanced stability against proteolytic degradation. Comparing with the unmodified proteins and peptides, the therapeutic potential of conjugates is greatly enhanced. Clinical applications of these conjugates have shown promising results for the future use.

  • PDF