• 제목/요약/키워드: protein adhesion

검색결과 375건 처리시간 0.031초

Identification of Anti-Angiogenic and Anti-Cell Adhesion Materials from Halophilic Enterobacteria of the Trachurus japonicus

  • Lim, Jong-Kwon;Seo, Hyo-Jin;Kim, Eun-Ok;Meydani, Mohsen;Kim, Jong-Deog
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1544-1553
    • /
    • 2006
  • The halophilic enterobacteria, Enterobacteria cancerogenus, was isolated from the intestines of the fusiform fish (Trachurus japonicus) to yield a protein-like material termed PLM-f74. PLM-f74 was characterized by strong inhibition ratios to angiogenesis (82.8% at the concentration of $18.5{\mu}g/ml$) and elevated antioxidative capacities with low toxicity. The PLM-f74 is a glycoprotein comprised of saccharides and amino acids. PLM-f74 inhibited cell adhesion that non-activated U937 monocytic cell adhesion to HUVECs activated with $IL-1{\beta}$ by 78.0%, and the adherence of U937 cells treated with the PLM-f74 and stimulated with $IL-1{\beta}$ to unstimulated HUVECs decreased by 102%. When both cell types were pretreated with PLM-f74, the adhesion of U937 cells to $IL-1{\beta}$-stimulated HUVECs was completely suppressed by 121% at a concentration of $18.5{\mu}g/ml$. PLM-f74 blocked signal pathways from VEGFR2, PI3K, ${\beta}$-catenin, and VE-cadherin to NF-kB, based on western bolt analysis. It also inhibited IL-l-stimulated HUVEC expression of the adhesion molecules, ICAM-l by 40%, VCAM-l by 60%, and E-selectin by 70% at the same concentration noted above. New anti-angiogenic and anti-cell adhesion materials showing elevated antioxidative capacities, and non-toxicity may be expected from these results.

Recombinant S-Layer Proteins of Lactobacillus brevis Mediating Antibody Adhesion to Calf Intestine Alleviated Neonatal Diarrhea Syndrome

  • Khang, Yong-Ho;Park, Hee-Young;Jeong, Yoo-Seok;Kim, Jung-Ae;Kim, Young-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.511-519
    • /
    • 2009
  • A chimeric gene encoding enhanced green fluorescent protein (EGFP) and a S-layer protein from Lactobacillus brevis KCTC3102, and/or two copies of the Fe-binding Z-domain, a synthetic analog of the B-domain of protein A, was constructed and expressed in Escherichia coli BL21(DE3). The S-layer fusion proteins produced in a 500-1 fermentor were likely to be stable in the range of pH 5 to 8 and $0^{\circ}C$ to $40^{\circ}C$. Their adhesive property enabled an easy and rapid immobilization of enzymes or antibodies on solid materials such as plastics, glass, sol-gel films, and intestinal epithelial cells. Owing to their affinity towards intestinal cells and immunoglobulin G, the S-layer fusion proteins enabled the adhesion of antibodies to human epithelial cells. In addition, feeding a mixture of the S-layer fusion proteins and antibodies against neonatal calf diarrhea (coronavirus, rotavirus, Escherichia coli, and Salmonella typhimurium) to Hanwoo calves resulted in 100% prevention of neonatal calf diarrhea syndrome (p<0.01), whereas feeding antibodies only resulted in 56% prevention.

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

Sulfonated Poly(ethylene glycol) Containing Methacrylate Copolymer Surfaces; Preparation, Characterization and In Vitro Biocompatibility

  • Park, Ki-Dong;Park, Hyung-Dal;Lee, Hee-Jung;Kim, Young-Ha;Tooru Ooya;Nobuhiko Yui
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.342-351
    • /
    • 2004
  • Poly(ethylene glycol) (PEG1K) and sulfonated PEG (PEG1K-SO$_3$) methacrylate (MA) copolymers have been prepared and characterized. The structures of the synthesized copolymers were confirmed by $^1$H and $^{13}$ C NMR spectroscopy and elemental analysis. The bulk characteristics of the copolymers were evaluated by viscosity and thermal analysis. The surface properties of the copolymers were investigated using dynamic contact angle measurements and electron spectroscopy for chemical analysis. The hydrophilicity of the surfaces modified with PEG1KMA or PEG1K-SO$_3$MA increased, possibly as a result of the orientation of the hydrophilic PEG1KMA/PEG1K-SO$_3$MA chains into the water phase. Platelets adhered less to the surfaces of the copolymers than they did to a polyurethane control. In addition, adhesion of platelets to the copolymer surfaces decreased upon increasing the chain density of PEG1KMA and sulfonated PEG1KMA in the copolymers. Both bacterial adhesion and protein adsorption were significantly reduced on the copolymer surfaces and their levels differ depending on the kind of surface or media.

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]

흰쥐 자궁에서 난소 스테로이드 호르몬에 의한 Adhesion 수용체 유전자 발현조절에 대한 연구 (Differential Expressions of Adhesion Receptor Genes in the Rat Uterus Associated with Ovarian Steroid Hormone)

  • 강한승;이채관;문덕환;강성구
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권1호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 연구는 생식주기 중의 흰쥐 자궁에서 발현되는 유전자들 중 adhesion수용체 유전자들의 발현이 프로게스테론(P$_4$)에 의하여 차별적으로 조절되는 실험을 하였다. 첫째 실험군은 난소절제 흰쥐와 배란기 흰쥐를 사용하였고(OVX/estrus), 둘째 실험군은 난소절제 흰쥐와 난소절제 후 P4를 주사한 흰쥐를 사용하였다(OVX/OVX+P$_4$). 적출한 자궁조직에서 total RNA를 추출, [$\alpha$$^{32}$P]-dATP로 probe를 제작한 후 Rat Atlas away 1.2 II(Clontech)을 이용하여 발현되는 유전자들을 선별하였으며, 그 중 adhesion 수용체 유전자들의 발현양상을 RT-PCR 방법으로 확인하였다. OVX/estrus 자궁의 유전자 발현을 비교한 경우, 전체 1176개의 유전자들 중 P4에 의해 발현이 증가되는 adhesion 수용체 유전자들은 embigin protein, activated leukocyte cell adhesion molecule, afadin, neuroligin 2, semaphorin Z, osteonectin 등 이었다. OVX/OVX+P$_4$자궁의 유전자 발현을 비교한 경우, P$_4$에 의해 발현이 증가되는 adhesion수용체 유전자들은 osteonectin, afadin, neuroligin 2, semaphorin Z 등 이었다. 그리고 afadin, neuroligin 2, semaphorin Z은 두 실험 군에 서 모두 유전자 발현이 증가되었다. 이러한 결과로 보아 이 유전자들은 P$_4$에 의하여 발현이 조절되어 배란 후 착상 준비에 관여할 것으로 추측된다.

  • PDF

혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과 (Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • 제31권8호
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling

  • Kim, Jin-Man;Lee, Kyunghee;Jeong, Daewon
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.230-235
    • /
    • 2018
  • Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin ${\alpha}v{\beta}3$ via "inside-out" and "outside-in" signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin ${\alpha}v{\beta}3$, $PLC{\gamma}$, $PKC{\delta}$, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of $PLC{\gamma}/PKC{\alpha}/RhoA$ signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via $PLC{\gamma}/PKC{\alpha}-PKC{\delta}/RhoA-Rac1$ signaling.

Diethylstilbestrol의 단핵구의 세포간 유착과정 조절효과 (Modulatory Effect of Diethylstilbestrol on CD29-Mediated Cell-cell Adhesion in Monocytic U937 Cells)

  • 김병훈;조재열
    • 약학회지
    • /
    • 제52권2호
    • /
    • pp.111-116
    • /
    • 2008
  • Diethylstilbestrol (DESB) is a synthetic estrogen not only that routinely prescribed, but also that known to be a teratogen. In this study, we found a novel pharmacological feature that DESB is able to positively modulate CD29 $({\beta}1-integrin)$ function. Thus, DESB up-regulated homotypic cell-cell adhesion of monocytic U937 cells mediated by CD29. However, DESB did not increase the surface level of CD29 and its binding activity to ligand (fibronectin), according to flow cytometric analysis and cell-fibronectin adhesion assay. Instead, the DESB-mediated up-regulation of cell-cell adhesion was blocked by several signaling enzyme inhibitors. Treatment of U0126 [an extracellular signal-regulated kinase (ERK) inhibitor], SB20358 (a p38 inhibitor) or Rp-8-pCPT-cGMP (a protein kinase G inhibitor) clearly inhibited DESB-mediated up-regulation of cell-cell adhesion induced by CD29. However, estrogen receptor antagonist ICI 182,780 failed to abrogate DESB effect. Therefore, our data suggest that DESB may up-regulate CD29-mediated cell-cell adhesion via modulating intracellular signaling enzymes such as ERK, PKG, and p38, independent of estrogen receptor function.

Enzyme-Linked, Biotin-Streptavidin Bacterial-Adhesion Assay for Helicobacter pylori Lectin-Like Interactions with Cultured Cells

  • Murillo, Guzman;Antonia, Maria;Ascencio, Felipe
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.35-39
    • /
    • 2001
  • A simple method for studying the lectin-like interactions between Helicobacter pylori and cultured human epithelial cell lines was developed using an enzyme-linked, biotin-streptavidin bacterial-adhesion assay. The present study suggests that this method is suitable for evaluating the participation of lectin interactions in the adhesion of H. pylori to cultured HeLa S3 and Kato III cells, both fixed and glycosidase-treated cells, as well as assessing glycoconjugated binding inhibition studies. The time-course and dose-dependent kinetics of the biotin-labeled H. pylori adhesion th the formaldehyde-fixed Hela S3 and Kato III cell lines exhibited saturation. In addition, the binding of the biotin-labeled H. pylori to the formaldehyde-fixed cultured cells was partially blocked by pre-incubation with glycoconjugates and polyclonal antibodies against a heparan sulfate binding protein from H. pylori.

  • PDF