• Title/Summary/Keyword: protective antigen

Search Result 130, Processing Time 0.029 seconds

Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening

  • Wei, Dong;Bu, Zhaoyun;Yu, Ailian;Li, Feng
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.811-815
    • /
    • 2011
  • Inhalational anthrax is caused by B. anthracis, a virulent sporeforming bacterium which secretes anthrax toxins consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease and is the main determinant in the pathogenesis of anthrax. Here we report the identification of a lead small-molecule inhibitor of anthrax lethal factor by screening an available synthetic small-molecule inhibitor library using fluorescence-based high-throughput screening (HTS) approach. Seven small molecules were found to have inhibitory effect against LF activity, among which SM157 had the highest inhibitory activity. All theses small molecule inhibitors inhibited LF in a noncompetitive inhibition mode. SM157 and SM167 are from the same family, both having an identical group complex, which is predicted to insert into S1' pocket of LF. More potent small-molecule inhibitors could be developed by modifying SM157 based on this identical group complex.

Immunological Mechanisms by Which Concomitant Helminth Infections Predispose to the Development of Human Tuberculosis

  • Mendez-Samperio, Patricia
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Helminthic infections afflict over 1.5 billion people worldwide, while Mycobacterium tuberculosis infects one third of the world's population, resulting in 2 million deaths per year. Although tuberculosis and helminthic infections coexist in many parts of the world, and it has been demonstrated that the T-helper 2 and T-regulatory cell responses elicited by helminths can affect the ability of the host to control mycobacterial infection, it is still unclear whether helminth infections in fact affect tuberculosis disease. In this review article, current progress in the knowledge about the immunomodulation induced by helminths to diminish the protective immune responses to bacille Calmette-Guerin vaccination is reviewed, and the knowledge about the types of immune responses modulated by helminths and the consequences for tuberculosis are summarized. In addition, recent data supporting the significant reduction of both M. tuberculosis antigen-specific Toll-like receptor (TLR) 2 and TLR9 expression, and pro-inflammatory cytokine responses to TLR2 and TLR9 ligands in individuals with M. tuberculosis and helminth co-infection were discussed. This examination will allow to improve understanding of the immune responses to mycobacterial infection and also be of great relevance in combating human tuberculosis.

Production of nitric oxide, interleukin-6 and tumor necrosis factor α from mouse peritoneal macrophages in response to Bacillus anthracis antigens

  • Yoo, Han-sang;Kim, Jae-wook;Cho, Yun-sang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.2
    • /
    • pp.301-310
    • /
    • 1999
  • Anthrax caused by Bacillus anthracis is one of the most important zoonotic diseases. The bacterium produces several virulence factors. Of the factors, protective antigen (PA) of tripatite toxin has been identified as a central component in the pathogenesis of anthrax. However, precise roles of PA and other cellular components in the reaction with the target cells remain to be elucidated, especially in the initial stage of the disease. Three B anthracis antigens were prepared for investigation; PA, sonicated cellular antigens (S-Ag) and formalin-inactivaed whole cell antigens (W-Ag). PA was purified from culture supernatant of the bacterium using FPLC system with MonoQ. S-Ag and W-Ag were prepared by sonication and formalin inactivation of the cultured cells, respectively. Purity of the antigens was confirmed by SDS-PAGE and Western blot analysis. The roles of these antigens in the production of inflammatory mediators such as NO, IL-6 and $TNF{\alpha}$ from mouse peritoneal macrophages were investigated. PA alone did not induce the production of the inflammatory mediators while the other antigens, S-Ag and W-Ag, did in a dose and time dependent manner. These results suggested that in addition to major virulence factors, other cellular antigens are also involved in the initial stage of the disease by the induction of inflammatory mediators.

  • PDF

Protective effect of bacteriophages against Salmonella Typhimurium infection in weaned piglets (이유자돈에서 Salmonella Typhimurium 감염에 대한 박테리오파지의 방어 효능)

  • Kim, Sung-Jae;Kim, Jae-Hoon;Jun, Soo-Yeon;Paik, Hyoung Rok;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • Salmonellosis has caused heavy losses in swine industry and implications for public health. Recently, the urgent problem of antibiotic resistance due to multidrug-resistant Salmonella spp. has been on the rise. The use of host-specific bateriophages as a biocontrol is one possible alternative. In this study, clinical signs, growth performance, quantification and detection of antigen, histopathological changes of gastrointestinal tracts were analyzed comparatively in weaned piglets according to administration of bacteriophages and challenge with Salmonella (S.) Typhimurium. Piglets challenged with S. Typhimurium after administered with bacteriophages showed reduced clinical signs, higher growth performance, lower bacterial shedding, lower quantificational value of antigens in intestines, higher V/C ratio and higher the number of goblet cells in intestines than piglets administered without bacteriophage and challenged with S. Typhimurium. These results indicate that feeding contained with bacteriophages has effect to prevent infection of S. Typhimurium in weaned piglets and suggest that a use of bacteriophage can be considered a valid antibiotic alternative.

Development of Vaccine Delivery System and Challenges (백신 전달기술 개발 동향과 과제)

  • Jung, Hyung-Il;Kim, Jung-Dong;Kim, Mi-Roo;Dangol, Manita
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

The Protective Effect of Lentinus Edodes on Mast Cell-Mediated Immediate-Type Hypersensitivity (비만세포 매개 즉시형 과민반응에 대한 표고버섯 추출물의 보호 효과)

  • Yan, Guanghai;Choi, Yun Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.3
    • /
    • pp.175-184
    • /
    • 2019
  • Mast cells are crucial as effector cells in the immediate-type allergic reaction. Lentinus edodes has been the popular edible mushroom in oriental countries and reported to have immunomodulatory, anti-tumor, anti-atherogenic, anti-viral, and anti-allergic activities. However, the roles of L. edodes in mast cell-mediated anaphylactic reaction have not been fully elucidated. In this research, we have demonstrated the effects of the methanol extract of L. edodes (MELE) on mast cell-mediated anaphylaxis-like and anaphylactic reactions. MELE suppressed systemic anaphylaxis-like reaction, plasma histamine levels, and ear swelling response in mice treated with compound 48/80. MELE also suppressed passive systemic and cutaneous anaphylaxis mediated by anti-dinitrophenyl IgE. In accordance with these findings, MELE dose-dependently decreased histamine release from RPMC evoked by compound 48/80 or the antigen-antibody reaction. To clarify the mechanism of degranulation system, intracellular cAMP levels as well as calcium influx in RPMC was evaluated. In compound 48/80-treated RPMC, MELE blocked calcium uptake into the cells. In addition, MELE elevated the intracellular cAMP content and significantly attenuated compound 48/80-induced cAMP reduction in RPMC. Taken together, we propose the clinical use of MELE in mast cell-mediated immediate-type allergic diseases.

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity (항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건)

  • Nam, Byung-Hyouk;Jo, Wool-Soon;Lee, Ki-Won;Oh, Su-Jung;Kang, Eun-Young;Choi, Yu-Jin;Do, Eun-Ju;Hong, Sook-Hee;Lim, Young-Jin;Kim, Ki-Uk;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.904-910
    • /
    • 2006
  • Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

Protective immunity against Naegzeria meningoencephalitis in mice (Naegleria fowleri 감염에 대한 방어면역에 관한 실험적 연구)

  • Lee, Sun-Gon;Im, Gyeong-Il;Lee, Geun-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.23 no.2
    • /
    • pp.293-299
    • /
    • 1985
  • This study is to verify the protective ability against experimental Naegleria meningoencephalitis by immunization with Naegleria fowleri in mice. Naegleria fewleri, strain 0359, and Naegleria gruberi, strain EGB, were used in this study, and cultured in CGVS medium akenically. Inbred BALB/C mice, weighing about 20g, were immunized by three intraperitoneal injection of $1{\times}10^6$ N. fowleri trophozoites at the interval of one week. This N. fowleri trophozoites antigen was fixed with 5% formaldehyde. N. fowleri trophozoites from culture were homogenized with soiicator at $4^{\circ}C$ as monitored by phase contrast microscopy, and their membrane and cell content preparations were made for the immunization of mice. Their inoculation dose in volume was equivalent to the $1{\times}10^6$ trophozoites in each injection for immunization. And N. gruberi trophosoites, whieh was fixed with 5% formaldehyde, were also used for immunisation. Mice were inoculated intranasally with $5{\times}10^4$ N. fowleri trophozoites in a 511 suspension under anesthesia by as intraperitoneal injection of about 1 mg secobarbiturate. Nervousness, rotation or sluggish behaviour were observed in the mice which were infected with N. fewleri. Necrotic lesion was demonstrated in the anterior portion of brain, especially in the olfactory lobe. The inflammatory cell infiltration with numerous H. fowleri trophozoites was noticed. This pathological changes were more extensive in the control than in the experimental groups. Mice were dead due to experimental primary amoebic meningoencephalitis that developed between 8 days and 23 days after inoculation. Mortality rate of the mice was low in the immunized experimental group. Mean survival time, which is the survival duration of mice from the infection to death, was prolonged significantly in the immunized mice except in the mice immunized with JV, fowleri membrane. Even in the mice immunized with N. gruberi, survival time was delayed. In summary, the effectiveness of immunization is demonstrated in terms of protective immunity against Naegleria meningoencephalitis in mice.

  • PDF

Evaluation of the Cell-Mediated Immunity in Treatment Failure Pulmonary Tuberculosis (치료실패 폐결핵 환자의 세포성면역반응에 관한 연구)

  • Park, Jeong-Kyu;Park, Jang-Seo;Kim, Hwa-Jung;Jo, Eun-Gyeong;Min, Dul-Lel;Lim, Jae-Hyun;Suhr, Ji-Won;Paik, Tae-Hyun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.1
    • /
    • pp.13-25
    • /
    • 1999
  • Background: Ineffective cell-mediated immune response in human tuberculosis is associated with a depressed Thl cytokine response and reduced production of IFN-$\gamma$. Most persons infected with Mycobacterium tuberculosis are healthy tuberculin reactors with protective immunity, but a minority with ineffective immunity develop extensive pulmonary tuberculosis. The cell-mediated immune response is an important aspect of host resistance to mycobacterial infection and is believed to be tightly regulated by a balance between Th1 cytokines including IFN-$\gamma$, IL-12, IL-18, regulated on activation, normal T cell expressed and secreted (RANTES) and Th2 counterparts such as IL-4, monocyte chemoattractant protein-l (MCP-l). Methods: Proliferation and mRNA expression of IFN-$\gamma$, RANTES and MCP-l by RT-PCR in peripheral blood mononuclear cells (PBMCs) in response to in vitro stimulation with mycobacterial antigens were compared in pulmonary tuberculosis patients with cured and treatment failure and in tuberculin-positive and tuberculin-negative healthy subjects. Results: Defective proliferative responsiveness to aqueous TSP antigen was involved with treatment failure tuberculosis patients. Aqueous TSP antigen-induced IFN-$\gamma$ and RANTES mRNA expression was decreased in treatment failure tuberculosis patients compared with healthy tuberculin reactors and cured tuberculosis patients (23.1 % versus 90.0% for IFN-$\gamma$ and 46.2% versus 70.0% versus 46.2% for RANTES). The frequency of MCP-l mRNA expression to aqueous TSP antigen in treatment failure tuberculosis patients was greater than in healthy tuberculin reactors and cured tuberculosis patients (76.9% versus 40.0%). Conclusion: The increasing expression of MCP-1 mRNA in response to aqueous TSP antigen might be predicted to favor Th1 responses and restricted Th1 responses in treatment failure of pulmonary tuberculosis.

  • PDF

Effects of Unripe Black Raspberry Extracts on Prostate Cancer Cell Line and Rat Model of Benign Prostatic Hyperplasia (복분자 미숙과 추출물이 전립선암 세포주와 전립선비대 백서모델에 미치는 영향)

  • Lee, Su Jung;Choi, Hye Ran;Lee, Jung-Hyun;Kwon, Ji Wung;Lee, Hee Kwon;Jeong, Jong Tae;Lee, Tae-Bum
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.507-515
    • /
    • 2014
  • Benign prostatic hyperplasia (BPH), which is commonly found in aging men, is characterized by hyperplasia of prostatic stromal and epithelial cells beginning in the periurethral zone of the prostate. The prevalence of BPH increases in an age-dependent manner. Here, we investigated the protective effects of unripe Rubus occidentalis extracts (UROE) on BPH development using a prostate cancer cell line and testosterone-induced BPH rat model. Experiments using an established hormone-dependent prostate cancer cell line (LNCaP) showed that UROE treatment significantly decreased expression of androgen-related genes, including androgen receptor (AR), prostate specific antigen (PSA), and 5-alpha reductase 2, but not 5-alpha reductase 1, which was also observed in flutamide-treated cells. Further, AR and PSA gene expression was reduced by UROE treatment under androgen-stimulated conditions using dihydrotestosterone (DHT). BPH animals displayed elevated prostate weights. However, UROE as well as finasteride treatment significantly reduced prostate weights and DHT levels compared to testosterone-induced BPH animals. Histopathological analysis also showed that UROE treatment suppressed testosterone-induced prostatic hyperplasia. Taken together, the results suggest that UROE may effectively inhibit the development of BPH and thus may be a useful agent in BPH treatment.