• Title/Summary/Keyword: protection tree

Search Result 389, Processing Time 0.029 seconds

A Safety Assessment Methodology for a Digital Reactor Protection System

  • Lee Dong-Young;Choi Jong-Gyun;Lyou Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.105-112
    • /
    • 2006
  • The main function of a reactor protection system is to maintain the reactor core integrity and the reactor coolant system pressure boundary. Generally, the reactor protection system adopts the 2-out-of-m redundant architecture to assure a reliable operation. This paper describes the safety assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures such as the random hardware failures, common cause failures, operator errors, and the fault tolerance mechanisms implemented in the reactor protection system. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system, and applied to the reactor protection system being developed in Korea to identify design weak points from a safety point of view.

Identification and Characterization of Ceratocystis fimbriata Causing Lethal Wilt on the Lansium Tree in Indonesia

  • Suwandi, Suwandi;Irsan, Chandra;Hamidson, Harman;Umayah, Abu;Asriyani, Khoirotun Dwi
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.124-136
    • /
    • 2021
  • Bark canker, wood discoloration, and wilting of the duku tree (Lansium domesticum) along the watershed of Komering River, South Sumatra Province, Indonesia first appeared in 2013. The incidence of tree mortality was 100% within 3 years in badly infected orchards. A Ceratocystis species was consistently isolated from the diseased tissue and identified by morphological and sequence analyses of the internal transcribed spacer (ITS) and β-tubulin regions. Pathogenicity tests were conducted and Koch's postulates were confirmed. The fungus was also pathogenic on Acacia mangium, but was less pathogenic on mango. Partial flooding was unfavourable for disease development. Two described isolates (WRC and WBC) had minor variation in morphology and DNA sequences, but the former exhibited a more pathogenic on both duku and acacia. The ITS phylogenies grouped the most pathogenic isolate (WRC) causing wilting of the duku tree within the aggressive and widely distributed ITS5 haplotype of C. fimbriata.

Protection of a Multicast Connection Request in an Elastic Optical Network Using Shared Protection

  • BODJRE, Aka Hugues Felix;ADEPO, Joel;COULIBALY, Adama;BABRI, Michel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Elastic Optical Networks (EONs) allow to solve the high demand for bandwidth due to the increase in the number of internet users and the explosion of multicast applications. To support multicast applications, network operator computes a tree-shaped path, which is a set of optical channels. Generally, the demand for bandwidth on an optical channel is enormous so that, if there is a single fiber failure, it could cause a serious interruption in data transmission and a huge loss of data. To avoid serious interruption in data transmission, the tree-shaped path of a multicast connection may be protected. Several works have been proposed methods to do this. But these works may cause the duplication of some resources after recovery due to a link failure. Therefore, this duplication can lead to inefficient use of network resources. Our work consists to propose a method of protection that eliminates the link that causes duplication so that, the final backup path structure after link failure is a tree. Evaluations and analyses have shown that our method uses less backup resources than methods for protection of a multicast connection.

Protection Switching Methods for Point-to-Multipoint Connections in Packet Transport Networks

  • Kim, Dae-Ub;Ryoo, Jeong-dong;Lee, Jong Hyun;Kim, Byung Chul;Lee, Jae Yong
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • In this paper, we discuss the issues of providing protection for point-to-multipoint connections in both Ethernet and MPLS-TP-based packet transport networks. We introduce two types of per-leaf protection-linear and ring. Neither of the two types requires that modifications to existing standards be made. Their performances can be improved by a collective signal fail mechanism proposed in this paper. In addition, two schemes - tree protection and hybrid protection - are newly proposed to reduce the service recovery time when a single failure leads to multiple signal fail events, which in turn places a significant amount of processing burden upon a root node. The behavior of the tree protection protocol is designed with minimal modifications to existing standards. The hybrid protection scheme is devised to maximize the benefits of per-leaf protection and tree protection. To observe how well each scheme achieves an efficient traffic recovery, we evaluate their performances using a test bed as well as computer simulation based on the formulae found in this paper.

Vital Area Identification Rule Development and Its Application for the Physical Protection of Nuclear Power Plants (원자력발전소의 물리적방호를 위한 핵심구역파악 규칙 개발 및 적용)

  • Jung, Woo Sik;Hwang, Mee-Jeong;Kang, Minho
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.160-171
    • /
    • 2017
  • US national research laboratories developed the first Vital Area Identification (VAI) method for the physical protection of nuclear power plants that is based on Event Tree Analysis (ETA) and Fault Tree Analysis (FTA) techniques in 1970s. Then, Korea Atomic Energy Research Institute proposed advanced VAI method that takes advantage of fire and flooding Probabilistic Safety Assessment (PSA) results. In this study, in order to minimize the burden and difficulty of VAI, (1) a set of streamlined VAI rules were developed, and (2) this set of rules was applied to PSA fault tree and event tree at the initial stage of VAI process. This new rule-based VAI method is explained, and its efficiency and correctness are demonstrated throughout this paper. This new rule-based VAI method drastically reduces problem size by (1) performing PSA event tree simplification by applying VAI rules to the PSA event tree, (2) calculating preliminary prevention sets with event tree headings, (3) converting the shortest preliminary prevention set into a sabotage fault tree, and (4) performing usual VAI procedure. Since this new rule-based VAI method drastically reduces VAI problem size, it provides very quick and economical VAI procedure. In spite of an extremely reduced sabotage fault tree, this method generates identical vital areas to those by traditional VAI method. It is strongly recommended that this new rule-based VAI method be applied to the physical protection of nuclear power plants and other complex safety-critical systems such as chemical and military systems.

An Unavailability Evaluation for a Digital Reactor Protection System (디지털 원자로보호계통 불가용도 평가)

  • Lee, Dong-Yeong;Choe, Jong-Gyun;Kim, Ji-Yeong;Yu, Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.81-83
    • /
    • 2005
  • The Reactor Protection System (RPS) is a very important system in a nuclear power plant because the system shuts down the reactor to maintain the reactor core integrity and the reactor coolant system pressure boundary if the plant conditions approach the specified safety limits. This paper describes the unavailability assessment of a digital reactor protection system using the fault tree analysis technique. The fault tree technique can be expressed in terms of combinations of the basic event failures. In this paper, a prediction method of the hardware failure rate is suggested for a digital reactor protection system. and applied to the reactor protection system being developed in Korea.

  • PDF