• 제목/요약/키워드: protection potential

검색결과 1,190건 처리시간 0.025초

아연 양극에 의한 도장강판과 나강판의 방식 연구 (A Study on the Protection of the Bare and Painted Steel Plates)

  • 문경만;김종신;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.55-65
    • /
    • 1993
  • Galvanic protection method is one the cathodic protection methods and is mostly used for corrosion prevention of heat exchangers and ship's hull. In this paper, it was investigated that how cathodic potential distribution was varied with according to the bare and painted steel plates in case of galvanic anode protection. The results obtained above were as follows. 1. Cathodic potential distribution of a painted steel plate was smoothed than that of the bare steel plate all over the cathodic surface area. 2. It was shown that polarization potential of the bare steel plate was somewhat shifted to negative potential, on the contrary that of the painted steel plate was somewhat shifted from negative potential to positive potential as time gone by beginning of galvanic anode method. 3. The applied current density in order to maintain constant protection potential(-770mv SCE) in the painted steel plate was less than that of the bare steel plate because of the high resistance polarization of the painted steel plate. 4. It was suggested that required number and life-time of anode for galvanic anode protection could be decided easily with corrosion prevention coefficient obtained by experimental data.

  • PDF

강의 음극방식에 미치는 표면상태와 유속의 영향 (The Effects of Surface Condition and Flow Rate to the Cathodic Protection Potential and Current on Steel)

  • Kyeong-soo, Chung;Seong- Jong, Kim;Myung-Hoon, Lee;Ki-Joon, Kim;Kyung-Man, Moon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.972-980
    • /
    • 2004
  • Cathodic protection is being widely used to protect steel structures in sea water environment, In order to protect steel structures completely, the flow condition of sea water surrounding with this structures and the surface condition of the structures must be considered for a desirable design of cathodic protection. In this study, the optimum protection potential and current density were investigated in terms of cathodic current density, surface condition and a flow condition of sea water. The optium protection potential of the cleaned specimen was -770 mV(SCE) and below. However in the case of the rusted specimen, its potential was -700 mV(SCE) and below, which was somewhat positive than the cleaned one irrespective of flow condition. The optimum cathodic protection current density for both the cleaned and rusted specimens was 100 mA/$\textrm{m}^2$, however, on the flow condition, 200 mA/$\textrm{m}^2$ to be supplied for cathodic protection of steel structures completely for both cleaned and rusted specimens.

The effect of cathodic protection system by means of zinc sacrificial anode on pier in Korea

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권10호
    • /
    • pp.1206-1211
    • /
    • 2014
  • This study has been conducted to confirm the effect of sacrificial anode cathodic protection system for 90 days to protect corrosion on pier that is located in Korea. The cathodically protected structure was a slab and a pile cap. Before the construction of cathodic protection system, the macrography was carried out. As a result of the macrography, many corrosion traces were confirmed in this structure. The trace was mainly focused on joint and zones that concrete cover was eliminated. To apply the cathodic protection system, many onsite techniques have been adopted. In addition, to confirm the inner state of steel in concrete properly, a corrosion monitoring sensor (DMS-100, Conclinic Co. Ltd) has been applied. Test factors were corrosion & cathodic protection potential, 4 hour depolarization potential, resistivity and current density. After 90 days from the installation of cathodic protection system, it could confirm that proper corrosion protection effect was obtained by considering the result of tests.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.531-545
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.569-583
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.

희생양극식 음극방식이 적용된 해안 교량 구조물의 방식거동 (Cathodic Protection Behavior of Coastal Bridge Structure with Sacrificial Anode Cathodic Protection System)

  • 하지명;진충국;정진아
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.242-246
    • /
    • 2012
  • This measurement represents the effectiveness of sacrificial anode cathodic protection (SACP) system in a coastal bridge structure. To verify the cathodic protection (CP) effect, the monitoring sensor (DMS-100) that could measure potential, corrosion rate, current, concrete resistivity, and temperature was embedded. The measurement conducted for three years after CP system was installed. Specifically, due to the fact that fresh water and sea water was repeated in the bridge structure, this bridge structure presented special CP behavior. Measurement factors were CP potential, CP current, concrete resistivity, and depolarization potential. In addition, visual inspection was also carried out. As a result of current and depolarization measurement, CP system was well activated in most piers.

선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구 (Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships)

  • 김성종;고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정 (Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method)

  • 이정형;정광후;박재철;김성종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.230-237
    • /
    • 2017
  • 본 연구에서는 해상풍력 타워 지지구조물용 강재인 S355ML 강에 대하여 전기화학적 기법으로 전기방식 설계에 필요한 최적 방식전위를 규명하고자 하였다. 동전위분극 실험 결과, 양극분극 곡선 상에서는 부동태 구간은 존재하지 않으며, 음극분극 곡선 상에는 용존산소환원반응에 의한 농도분극 구간과 수소가스 발생에 의한 활성화분극 구간이 관찰되었다. 음극방식 시 방식전위에 해당하는 농도분극 구간은 약 - 0.72 V ~ - 1.0 V의 전위 구간인 것으로 확인되었다. 다양한 전위에서 정전위 실험을 실시한 결과 전류밀도 변화는 시간에 따라 안정화되는 경향을 나타냈다. 1200초 동안 정전위 실험 후 주사전자현미경과 3D 분석 현미경을 이용한 시험편 표면 분석 결과, 양극분극 전위에 해당하는 0 V ~ - 0.50 V의 전위구간에서는 양극용해반응에 의한 부식손상이 관찰되었다. 이에 반해 음극분극 전위 영역에서는 대체적으로 손상이 없는 양호한 표면을 유지하였으며 석회질 피막 형성을 확인할 수 있었다. 연구결과, 농도분극 영역에 해당하는 - 0.8 V ~ - 1.0 V의 전위영역이 S355ML 강의 외부전원법에 의한 음극방식 적용 시 최적 방식 전위 구간으로 사료된다.

표면(表面) 코팅 양극(陽極)과 태양전기(太陽電氣)를 이용한 콘크리트 중의 철근(鐵筋) 부식(腐食) 방지(防止)를 위한 효과 (Effect for Steel Corrosion Protection in Concrete applying Surface Coating Anode and Solar Battery)

  • 김종필;박광필;김성수;정호섭;이승태
    • 자원리싸이클링
    • /
    • 제18권4호
    • /
    • pp.44-51
    • /
    • 2009
  • 양극과 철근과의 사이에 이온의 흐름이 원활하도록 전도성이 우수한 탄소리본전극과 표면코팅을 실기한 후 무공해, 반영구적인 무한태양전기를 전류로 공급한 전기방식에 의한 콘크리트 중의 철근 부식 방지 효과를 알아보기 위하여 복극량, 철근의 복극전위 및 부식속도를 측정하였다. 실험결과 방식을 실시한 모든 대상 시험체가 NACE의 복극량 기준 100 mV 기준을 만족하였으며, 방식을 실시한 경우 복극전위와 부식속도가 안정적인 범위에 있음을 알 수 있었다.