• Title/Summary/Keyword: protection of groundwater contamination

Search Result 37, Processing Time 0.028 seconds

Applicability of Groundwater Quality Monitoring Network Design Methodologies (지하수 수질관측망 설계방법론의 적용성 검토)

  • Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.685-694
    • /
    • 1998
  • Protection of groundwater resources from contamination has been of increasing concern throughout the past decades. In practice, however, groundwater monitoring is performed based on the experience and intuition of experts or on the convenience. In dealing with groundwater contamination, we need to know what contaminants have the potential to threat the water quality and the distribution and concentration of the plumes. Monitoring of the subsurface environment through remote geophysical techniques or direct sampling from wells can provide such information. Once known, the plume can be properly managed. Evaluation of existing methodologies for groundwater monitoring network design revealed that one should select an appropriate design method based on the purpose of the network and the availability of field information. Integer programming approach, one of the general purpose network design tools, and a cost to-go function evaluation approach for special purpose network design were tested for field applicability. For the sam contaminated aquifer, two approaches resulted in different well locations. The amount of information, however, was about the same.

  • PDF

A GIS Technology for Growndwater Protection (수자원 관리와 보호를 위한 GIS활용연구)

  • 김윤종;성익환;김원영;유일현;박준동
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.253-266
    • /
    • 1993
  • GIS technique was applied for ffie work of water supply protection, and GIS rnaps were produced by this technique in Cheong-ju area. They are actual runoff rnap and regional groundwater protection map. The digital database was estabilished for creation of these maps in EGIS(Environmental Geologic information system). A lot of environmental, hydrological and geotedmical data relating to the area were collected from various sources, and used along with the results of the field investigation and laboratorv works in the interpretation of environmental geologic characteristics of the area. These special maps can be applied in the establishment of water supply protection and regional land use planning. For instant, the actaal runoff rnap is very linportant for hydrologic study, and groundwater protection map for susceptibility to groundwater contamination in the area. Actual runoff of the study area was calculated about 148mm using the method of SCS(Soil Consrevation Service) in GIS. The GIS technique was effective in watershed analysis and water balance study.

  • PDF

Hydrogeochemistry of groundwaters in Boeun Area, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Kim, Kyoung-Ho;Kweon, Jang-Soon;Sung, Ig-Hwan;Lee, Byeong-Dae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.519-519
    • /
    • 2003
  • We performed a hydrochemical study on a total of 89 bedrock groundwaters collected from preexisting wells (30 to 300 m deep) in the Boeun area. Hydrochemical data showed significant variations in the area, due to varying degrees of anthropogenic pollution. The waters were mostly enriched in Ca and HCO$_3$ but locally contained significant concentrations of anthropogenic constituents in the general order of Cl >NO$_3$>SO$_4$. In particular, about 11% of the examined wells exceeded the drinking water standard with respect to nitrate. We consider that aquifers in the area are locally highly susceptible to the contamination related to agricultural activities. Diagrams showing the relationships between the summation of cations (∑cations) and the concentration of several anions with different origin (natural versus anthropogenic) were used to estimate the relative role of anthropogenic contamination. A good correlation was observed for the relationship between ∑cations and bicarbonate, indicating that water-rock interaction (namely, hydrolysis of silicate minerals) is most important to control the water quality. Thus, we made an assumption that the equivalent of dissolved cations for a water should be equal to the alkalinity, if the chemistry were controlled solely by a set of natural weathering reactions. If we excluded the equivalent quantities of cations and bicarbonate (natural origin) from the acquired data for each sample, the remainder therefore could be considered to reflect the degree of anthropogenic contamination. Finally, we performed a multiple regression approach for hydrochemical data using the ∑cations as a dependent variable and the concentration data of each anion (natural or anthropogenic) as an independent variable. Using this approach, we could estimate the relative roles of anthropogenic and natural processes. Rather than the conventional evaluation scheme based on water quality criteria, this approach will be more useful and reasonable for the evaluation of groundwater quality in a specific region and also can be used for planning appropriate protection and remedial actions.

  • PDF

논산지역 간이급수시설 수질특성에 대한 연구

  • Go Gyeong-Seok;Lee Jin-Su;Kim Tong-Gwon;Kim Jae-Gon;Jo Seong-Hyeon;Seok Hui-Jun;Kim Hyeong-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.344-347
    • /
    • 2005
  • The purpose of the study for the development of the technologies of water quality monitoring and contamination protection at water resource aquifer is to secure the groundwater as potable water resources. The results of water analysis as a basis of potable water criteria showed that 30 groundwater samples among 138 samples of small water supply system (21.7%) were exceeded the water criteria. The concentrations of Cl, $NO_3$ and Na for granite area are higher than those of gneiss and metasedimentary rocks of Ogcheon belt area and they are caused by the high vulnerability of groundwater at granite region where the residential area and cultivated land are concentrated. The spatial distribution of components indicated the close relationships between water quality and geology, land use, and topography. The multivariate statistical results showed that the water samples are divided into three groups by geology.

  • PDF

A Comparison Study of Various Water Sources for Feasibility of Expanding the use of Groundwater in Public Water Supply of South Korea (지하수 상수원 활용의 타당성 고찰을 위한 상수도 취수원의 특성 비교 연구)

  • Cha, Eun-Jee;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.60-70
    • /
    • 2017
  • As water sources become more vulnerable to the effects of climate change such as drought and contamination, the diversification of water sources is important for securing water supply. This study examines the properties of five water sources for public supply, including river and river-bed water, dams, reservoirs, and groundwater, while ensuring that the quantities available from such sources are stable and the water itself is safe for use. This study also analyzes the power, chemical, repair and maintenance, and labor costs associated with each water source. The results demonstrate that groundwater has high potential as a water source because it is readily available (about $12.89billion\;m^3/yr$), but only a small portion of it is currently used. Analyses indicated that groundwater is the most efficient source of water to meet water demand below $1,000,000m^3/yr$, which covers 62.5% of water supply facilicities. With the implementation of groundwater dams, groundwater can become cost-efficient even for larger water demand. Additionally, the water source protection areas are the smallest for groundwater among the five water sources. In conclusion, the use of groundwater as an alternative water source is feasible becasue it is readily available, safe, cost-efficient, and requires the lowest amount of environmental regulations for the diversification of water supply sources.

Reviews on the Studies of MTBE Contaminants in Groundwater

  • 이지훈;이진용;천정용;이강근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.55-58
    • /
    • 2000
  • Methyl tertiary butyl ether (MTBE) is a gasoline additive that boosts the oxygen content in fuel (an oxygenate), resulting in less air-polluting carbon monoxide being released from vehicle exhaust systems. Then, groundwater contamination problems have been developed in areas where the chemical is used. Common sources of water contamination by MTBE include leaking underground gasoline storage tanks and leaks and spills from above ground fuel storage tanks, etc.. Studies on the chemical and these problems are going on abroad vigorously. These studies should be performed in our country as well more actively. This paper reviews on articles on these studies and focuses on the identification of the chemical as a groundwater contamination source.

  • PDF

Groundwater vulnerability assessment in the southern coastal sedimentary basin of Benin using DRASTIC, modified DRASTIC, Entropy Weight DRASTIC and AVI

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.152-152
    • /
    • 2021
  • The importance of groundwater has long been recognized, but the ground water potential to become contaminated as a result of human activities has only been recognized in recently. Before 1980 it was thought that soils served as filters, preventing harmful substances deposited at the surface from migrating into groundwater. Today it is known that soils have a finite capacity to protect groundwater. It can be contaminated from divers sources. Therefore, Assessment of aquifer vulnerability to pollution is essential for the protection and management of groundwater and land use planning. In this study, we used DRASTIC and AVI for groundwater vulnerability to contamination assessment. the different methods were applied to the southern coastal sedimentary basin of Benin and DRASTIC method was modified in two different steps. First, we modified DRASTIC by adding land use parameter to include the actual pollution sources (DRASTICLcLu) and second, classic DRASTIC weights was modified using Shannon's entropy (Entropy weight DRASTIC). The reliability of the applied approaches was verified using nitrate (NO3-) concentration and by comparing the overall vulnerability maps to the previous researches in the study area and in the world. The results from validation showed that the addition of landcover/land use parameter to the classic DRASTIC helps to improve the method for better definition of the vulnerable areas in the basin and also, the weight modification using entropy improved better the method because Entropy weight DRASTICLcLu showed the highest correlation with nitrate concentration in the study basin. In summary the weight modification using entropy approach reduced the uncertainty of the human subjectivity in assigning weights and ratings in the standard DRASTIC.

  • PDF

U.S.'s Patent Network Analysis and Technology Trends on Underground Water for the Response of Climate Change (기후변화 대응을 위한 미국 지하수 기술 특허네트워크 분석과 주요 특허 기술 동향)

  • Yoon, Soon-Uk;Choi, Hanna;Kim, Minchul
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • This study identified key patents on U.S. underground water technology through patent network analysis. As a result, there were many technologies that used the technology to remove heavy metals to prevent contamination of groundwater. While patents between groundwater technology patents were in charge of intermediaries, the connectivity between groundwater technologies is not high. The patented technologies related to groundwater were largely distinguishable by pumping, monitoring, and decontamination. Monitoring includes techniques that enable identification of physical and biological properties, such as the type of contaminants, as well as geographic characteristics for analysis of groundwater flow, flow or water quality. Pollution purification technology refers to the process of physiochemical and biological purification for soil and groundwater. U.S. technology cases showed that the U.S. had high technology in water treatment area. And patent protection were also needed to cope with water shortages caused by climate change.

Introduction to US EPA Smart Scoping Technical Guide for Improving Pollution Site Investigation (국내 오염부지 조사 개선을 위한 US EPA 스마트 스코핑 기술 소개)

  • Kim, Bomin;Kim, Han-Suk;Kwon, Man Jae;Jo, Ho Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.70-85
    • /
    • 2020
  • This paper introduces the 'Smart Scoping for Environmental Investigations Technical Guide' issued by the US Environmental Protection Agency in 2018, which describes the use of smart scoping during lifecycle of remedial investigation projects. This paper also briefly summarizes the guidelines of soil and groundwater contamination investigation of South Korea. The smart scoping practices can support the development of a robust and realistic conceptual site model that is very useful for investigations and evaluations of the contaminated site. The application of evaluation tools relevant for the site-specific characteristics is important for the development of a conceptual site model. The smart scoping recommends the use of previous investigation data and implementation of best proven strategies for successful remedial investigation project. The use of smart scoping in contaminated site investigation will provide better management of contaminated sites.

Contaminant transport through porous media: An overview of experimental and numerical studies

  • Patil, S.B.;Chore, H.S.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.45-69
    • /
    • 2014
  • The groundwater has been a major source of water supply throughout the ages. Around 50% of the rural as well as urban population in the developing countries like India depends on groundwater for drinking. The groundwater is also an important source in the agriculture and industrial sector. In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use and contamination. A good planning and management practices are needed to face this challenge. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface environment. It is obvious that the contaminant source activities cannot be completely eliminated and perhaps our water bodies will continue to serve as receptors of vast quantities of waste. In such a scenario, the goal of water quality protection efforts must necessarily be the control and management of these sources to ensure that released pollutants will be sufficiently attenuated within the region of interest and the quality of water at points of withdrawal is not impaired. In order to understand the behaviour of contaminant transport through different types of media, several researchers are carrying out experimental investigations through laboratory and field studies. Many of them are working on the analytical and numerical studies to simulate the movement of contaminants in soil and groundwater of the contaminant transport. With the advent of high power computers especially, a numerical modelling has gained popularity and is indeed of particular relevance in this regard. This paper provides the state of the art of contaminant transport and reviews the allied research works carried out through experimental investigation or using the analytical solution and numerical method. The review involves the investigation in respect of both, saturated and unsaturated, porous media.